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Abstract
In many real-time systems, continuous operation can raise processor temperature, potentially
leading to system failure, bodily harm to users, or a reduction in the functional lifetime of a
system. Static power dominates the total power consumption, and is also directly proportional
to the operating temperature. This reduces the effectiveness of frequency scaling and necessitates
the use of sleep states. In this work, we explore the relationship between energy savings and
system temperature in the context of fixed-priority energy-saving schedulers, which utilize a
processor’s deep-sleep state to save energy. We derive insights from a well-known thermal model,
and are able to identify proactive design choices which are independent of system constants and
can be used to reduce processor temperature. Our observations indicate that, while energy savings
are key to lower temperatures, not all energy-efficient solutions yield low temperatures. Based on
these insights, we propose the SysSleep and ThermoSleep algorithms, which enable a thermally-
effective sleep schedule. We also derive a lower bound on the optimal temperature achievable
by energy-saving schedulers. Additionally, we discuss partitioning and task phasing techniques
for multi-core processors, which require all cores to synchronously transition into deep sleep, as
well as those which support independent deep-sleep transitions. We observe that, while energy
optimization is straightforward in some cases, the dependence of temperature on partitioning
and task phasing makes temperature minimization non-trivial. Evaluations show that compared
to the existing purely energy-efficient design methodology, our proposed techniques yield lower
temperatures along with significant energy savings.
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1 Introduction

Computationally-intensive real-time applications are becoming ubiquitous. Autonomous
vehicles are a prime example where, computational requirements are driven by the need to
process streams of data from multiple sensors. Advancements in semiconductor technology
have enabled such applications by increasing the number of transistors available to system
designers. However, the side effects of rising transistor density include increased power and
heat dissipation [23]. Hence, continuous operation may cause the temperature of a processor
to exceed its operating limits, forcing it to reduce its frequency or shut down. This in turn
can lead to missed deadlines, and possibly catastrophic failure. Similarly, violating thermal
constraints in implantable medical devices can cause bodily harm [8]. Moreover, it is critical
that the components used in such systems perform reliably over their lifetime. System
temperature is one of the key factors which influence reliability. High temperatures degrade
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the system reliability over a period of time [31][32], and a 10-15○C difference in operating
temperature can result in a 2x difference in the lifespan of a device [32].

Energy savings and system temperature are intricately tied together. Modern processors
are equipped with energy-management features such as Dynamic Voltage and Frequency
Scaling (DVFS) [35], and the use of low-power sleep states [28]. DVFS enables the processor
to change its operating frequency and voltage, thereby reducing dynamic switching power,
while low-power sleep states use power gating and/or clock gating [3] to reduce static leakage
power dissipation when the processor is idle. As transistor geometries get smaller, the
dominance of static power as a contributor to total power consumption is only expected
to increase [22]. Since static power is also directly dependent on operating temperature,
scheduling techniques will increasingly need to take advantage of processor sleep states.

1.1 Contributions of the Paper
In this work, we analyze the thermal properties of Energy-Saving (ES) Schedulers [12], which
utilize the processor’s deep-sleep state. Our contributions are as follows:
1. We analyze the thermal performance of ES Schedulers using the well-known thermal

model based on Fourier’s Law, and derive design choices to pro-actively (i.e. a priori)
minimize the maximum temperature for both uni-core and multi-core processors.

2. We present the SysSleep algorithm to maximize the time the processor can be in deep
sleep, and the ThermoSleep heuristic that yields a thermally-effective sleep schedule.

3. We derive a lower bound on the optimal maximum temperature achievable by ES
Schedulers.

4. We propose task-partitioning heuristics that significantly reduce the maximum temperat-
ure for multi-core processors using ES Schedulers.

5. We analyze the impact of phasing each core’s forced-sleep task on temperature, in the
context of multi-core processors where cores can independently transition into deep sleep.

1.2 Background
We now introduce the background material and notation relevant to our work. Consider
a task set Γ consisting of n independent1 periodic real-time tasks τ1, τ2, ..., τn. Each task
τi ∈ Γ is characterized by {Ci, Ti,Di}, where Ci is the worst-case execution time, Ti is the
period, and Di is the relative deadline from its arrival time. We assume that for each task
Di = Ti, i.e., deadlines are implicit. The utilization of a task τi is given by Ui = Ci/Ti and
task priorities are assigned using the rate-monotonic scheduling policy [27]. The task set is
listed in non-increasing order of task priorities such that T1 ≤ T2 ≤ .. ≤ Tn. Each task has
an initial arrival time (or phase) of φi, such that its arrival times are φi, φi + Ti, φi + 2Ti, ....
Without loss of generality, we assume that the initial arrival time of task τ1, φ1 = 0.

The following Energy-Saving (ES) Schedulers have been defined in [28] and [12]: Energy-
Saving Rate-Harmonized Scheduling+ [28][12] (ES-RHS+), Energy-Saving Rate-Monotonic
Scheduling [12] (ES-RMS) and Energy-Saving Deadline-Monotonic Scheduling [12] (ES-DMS).
These techniques are characterized by a high-priority periodic Energy-Saver task (also referred
to as an ES-task or forced-sleep task) τsleep, which puts the processor into an uninterrupted
deep sleep for a duration Csleep ≥ CSleepMin every period Tsleep ≤ T1. This ensures that the
ES-task executes at the highest priority in accordance with the Rate-Monotonic (RM) [27]

1 Task release jitter and task dependence can be incorporated using the frameworks proposed in [6] and
[30], and are beyond the scope of this work.
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priority assignment. If any idle durations precede and are contiguous with the ES-task, they
can be used to put the processor into deep sleep [12]. CSleepMin is a system constraint that
represents the minimum round-trip time required for the processor to go into the deep-sleep
state and return back to the active state. We assume that CSleepMin captures the overhead
involved in transitioning to deep sleep. While using ES Schedulers, the processor can be in
one of the following states:

Busy: The processor is executing a task τi ∈ Γ.
Forced Sleep: The processor is forced into deep sleep by the Energy-Saver task τsleep.
Idle: The processor is neither busy nor in forced sleep.

For ES Schedulers, the generalized worst-case response time test for a task τi is given by
the following recurrence relation:

W0 = Ci,Wk+1 = Ci + ⌈
Wk

Tsleep
⌉Csleep +

i−1
∑
j=1

⌈
Wk

Tj
⌉Cj (1)

where, Wk+1 is the worst-case response time of the task τi. If Wk+1 ≤ D′
i, then τi will be

schedulable, otherwise τi will miss its deadline, where, D′
i is the generalized deadline of a

task τi and depends on the type of ES Scheduler used. Based on this notation, we briefly
describe each of the ES Schedulers:

(1) ES-RMS : Tasks execute as per rate-monotonic priorities and deadlines are assumed
to be implicit (Di = Ti). Here, the generalized deadline, D′

i = Ti.
(2) ES-DMS : Tasks execute as per deadline-monotonic priorities. This implies that the

generalized deadline, D′
i =Di.

(3) ES-RHS+: Tasks execute as per rate-monotonic priorities, and deadlines are implicit.
However, tasks become eligible to execute based on the principle of harmonization: A task
is eligible to execute only when the processor is busy or a Harmonizing Period boundary
has been reached [12]. The use of harmonization enables every idle duration in the ES-
RHS+ schedule to precede and be contiguous with the ES-task. Hence, all the processor’s
idle durations can be utilized to put it into deep sleep, thereby providing maximal energy
savings [12]. Due to harmonization, each task can be delayed by at most Tsleep −Csleep [12].
This implies that the generalized deadline, D′

i = Ti − (Tsleep −Csleep), and provides a tight
schedulability test compared to the slightly looser one proposed in [12]. An example schedule
for ES-RHS+ and ES-RMS using a taskset with 3 tasks is illustrated in Figure 1.

Multi-core processors also support a number of low-power states called C -states. In some
processors, individual cores can transition to intermediary idle states. However, in many
processors, cores cannot individually transition into deep sleep. Based on the ability to
transition into deep sleep, two types of problems were defined in [12] for ES Schedulers:

(1) Synchronized-Sleep or SyncSleep Scheduling where, all cores transition synchronously
into deep sleep. Example processors include Intel Core2 Duo [13] and AMD Opteron [15].

(2) Independent-Sleep or IndSleep Scheduling where, each core can independently transition
into deep sleep. Example processors with this flexibility include Samsung Exynos 5800 [2]
and the 4th generation Intel Core processors [1].

In the SyncSleep context, only for the idle durations that overlap across all cores and
exceed CSleepMin can the processor be put into deep sleep. Given the same Tsleep, ES-RMS
can guarantee higher forced-sleep utilization Usleep than ES-RHS+ [12]. This makes ES-RMS
a better choice for SyncSleep [12]. For IndSleep, it was proved that using ES-RHS+ can
yield an energy-optimal schedule for all feasible partitions [12].

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
introduces the thermal model used in the paper. Section 4 introduces the SysSleep algorithm,
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Figure 1 Energy-Saving Schedulers: ES-RHS+ & ES-RMS (Csleep = 5, CSleepMin = 5, Tsleep = 10)

and discusses utilizing ES Schedulers for reducing temperature in uni-core processors. Section
5 discusses utilizing ES Schedulers for reducing temperature in multi-core processors. Section
6 presents comparative evaluations, and Section 7 provides concluding remarks.

2 Related Work

Thermal Management can be done reactively at runtime [8, 17, 11, 36] or proactively at
design time [20, 5, 16, 33, 10, 9, 4]. In the scope of reactive techniques, Fu. et al. [17]
proposed a control-theoretic algorithm to meet the desired temperature requirement on a
multi-core processor, subject to timing constraints. Yun et al. [36] used a machine-learning
technique (SVM) to predict the temperature profile of a multi-processor system. Based on the
predicted value, a dynamic temperature management scheme is used. In [8], Chandarli et al.
proposed an optimal reactive scheduler for fixed-priority uniprocessor sleep scheduling along
with an associated response-time based analysis framework. However, reactive schedulers
require temperature sensors, which may not always be present in real platforms.

In the scope of proactive techniques, [10] describes a real-time scheduling algorithm for
uniprocessors, based on a thermal model approximated by Fourier's Law. The algorithm
derives a speed schedule by minimizing temperature under both timing and thermal con-
straints. In [9], an assignment and scheduling technique for an MPSoC was proposed, which
utilizes a mixed-integer linear program solver to optimize the peak temperature. In [16], an
optimal speed schedule is derived for a multi-core platform, based on a thermal model given
at design time. In [4], Masud et al. proposed the use of a thermal-aware periodic resource to
minimize peak temperature, in the context of uniprocessor Earliest Deadline First (EDF)
scheduling. The processor slack is utilized to put the processor into a sleep state.

Most of the pieces of work stated [17, 11, 36, 16, 20, 5] have focused on the use of
DVFS to optimize the processor temperature. However, the dominance of static power
makes it necessary to investigate techniques which utilize sleep states. Additionally, many
low-powered devices often lack DVFS, but support sleep states [28]. The work in [8] and [4]
propose thermal-aware techniques which utilize processor sleep states. However, [4] assumes
dynamic-priority EDF scheduling. On the other hand, [8] presents a reactive framework for
uniprocessor fixed-priority scheduling. To the best of our knowledge, no thermal analysis
framework for proactive fixed-priority sleep scheduling exists in the literature.
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Fixed-priority energy-saving schedulers, which periodically utilize the processor’s deep-
sleep state, were proposed in [28][12]. For these schedulers, the work in [12] proposed various
techniques to design energy-efficient schedules in both the uni-core and multi-core processor
contexts. In this paper, we analyze the thermal implications of ES Schedulers in light of their
energy-saving properties. Based on a well-known thermal model, we derive practical insights
and algorithms. Our proposed techniques focus on minimizing the maximum temperature,
rather than optimizing to meet a set of thermal constraints.

3 Thermal Modeling of ES Schedulers

In this section, we introduce the thermal model used in the paper, and derive insights in
the context of ES Schedulers. The temperature of a processor is dependent on the power
consumption, and the variation in power consumption over time. Therefore, we can broadly
define three factors responsible for a processor’s thermal profile: (i) Heat generation by a core
(due to power consumption). (ii) Heat dissipation to the environment (using heat sinks). (iii)
Heat dissipation between adjacent cores (due to difference in power consumption patterns).

3.1 Power and Thermal Model
The power consumption of a CMOS circuit is modeled as a combination of two components:

(1) Dynamic Switching Power is dependent on the processor operating frequency, and is
consumed when the processor is busy. The dynamic power consumption, PD, can be modeled
as a convex function of the operating frequency s as [8]: PD = κ0s

α where, α and κ are
system constants which depend on the semiconductor technology used.

(2) Static Leakage Power is due to leakage current, which depends on the semiconductor
technology and the operating temperature. Static power is consumed even when the processor
is idle, but can be nearly eliminated by putting the processor into deep sleep. Static power, PS ,
can be conservatively modeled as a linear function of temperature [8]: PS = κ1Θ + κ2 where,
κ1 and κ2 are technology-dependent system constants, and Θ is the operating temperature.

Hence, the total power consumption P , as a function of time t, can be modeled as:
P (t) = PD(t)+PS(t). This model can be used to derive the thermal model for a uniprocessor.
As OS schedulers control task execution at the granularity of a processor core, each core
can be treated as a single unit producing heat and can be modeled as an RC circuit [8] [37].
When a core is busy, it generates heat. Using the RC thermal model, Fourier’s Law [8] can
be used to state the differential equation of the temperature, Θ∗ with respect to time:

dΘ∗
(t)/dt = [P (t)/C] − [(Θ∗

(t) −ΘA)/RC] (2)

where, ΘA is the ambient temperature of the environment. By substituting PD and PS in
Equation 2, we can rewrite Equation 2 as a classical linear differential equation [8]:

dΘ(t)/dt = a − bΘ(t) (3)

where, a = κ0s
α/C, b = (1 − κ1R)/RC and the temperature has been offset from Θ∗(t) −

[(κ2R +ΘA)/(1 − κ1R)] to Θ(t). Solving Equation 3 gives the temperature at time t as:

Θ(t) = a/b + (Θ(t0) − a/b)e
−b(t−t0) (4)

When the processor is in deep sleep, the power consumption can be assumed to be
negligible. This is a valid assumption as the difference in power consumption between the
busy and deep-sleep states is different by several orders of magnitude [28]. Hence, the
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processor can be deemed to be cooling when in the deep-sleep state. Using this assumption,
one can set a = 0 in Equation 4 to obtain the model for cooling:

Θ(t) = Θ(t0)e
−b(t−t0) (5)

3.2 Thermal-Aware ES Scheduler Design
Consider a uni-core processor. For ES Schedulers, the processor is guaranteed to be in deep
sleep atleast for a duration Csleep every Tsleep. Hence, in the worst case, a core is busy
for a duration of Tsleep −Csleep every Tsleep. Therefore, in the worst case, a processor core
heats up from kTsleep to kTsleep +Csleep and cools down from kTsleep +Csleep to (k+1)Tsleep,
where k is a non-negative integer. As the heating function is monotonic in the period
Tsleep, the temperature would be maximum at the end of the heating duration. We call this
temperature Θmax. Similarly, as the cooling function is monotonic in the period Tsleep, the
temperature would be minimum at the end of the cooling duration. We call this temperature
Θmin. Applying the heating and cooling models from Equations 4 and 5 in the duration
[kTsleep, (k + 1)Tsleep), we can write Θmax and Θmin as recurrent equations:

Θk
max = a/b + (Θk−1

min − a/b)e
−b(Tsleep−Csleep), Θk

min = Θk
maxe

−bCsleep (6)

At steady state, as k →∞, then Θk
min = Θk−1

min and Θk
max = Θk−1

max. Hence, the steady state
worst-case values of Θmax and Θmin are given by:

Θmin = (a/b) ∗ [(ebTsleep(1−Usleep) − 1)/(ebTsleep − 1)],Θmax = Θmine
bUsleepTsleep (7)

where, Usleep = Csleep/Tsleep denotes the guaranteed utilization of the ES-task. Based on the
steady state temperatures, we can draw the following conclusions:

Increasing Usleep, keeping Tsleep constant, decreases the maximum temperature Θmax.
Decreasing Tsleep, keeping Usleep constant, decreases the maximum temperature Θmax.

Hence, minimizing Tsleep, while maximizing Usleep, leads to a low maximum temperature.
Thus, while it is advantageous to increase the total fraction of time the processor cools, i.e.
Usleep ↑ (also increases guaranteed energy savings), the cooling durations should be smaller
but more frequent, i.e. Tsleep ↓. Note that these statements hold regardless of the system’s
thermal constants. Hence, using these principles, we can design techniques which can be
used to minimize the temperature across a range of different systems.

In prior work [28][12], it was assumed that the period of the ES-task is a sub-harmonic
of the highest-priority task. In the following section, we relax this constraint and provide
techniques to design a thermally-effective ES schedule. Additionally, we show how choosing
a proper Tsleep can maximize energy savings and improve schedulability.

4 SysSleep Algorithm

Consider a uni-core processor. To lower the worst-case maximum temperature for a taskset, we
need to find an ES-task with a small period Tsleep, which also maximizes Usleep. Maximizing
Usleep corresponds to finding the maximum highest-priority workload that can be added to
a taskset without making it unschedulable. In [29], Saewong et al. proposed the SysClock
algorithm which calculates the lowest processor frequency at which all tasks (with RM/DM
priority assignment) meet their deadlines. SysClock calculates the slack at all scheduling
points in the critical zone [24] to determine the optimal operating frequency. We extend that
algorithm in the context of ES Schedulers, and use it to compute the set of Tsleep values
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which maximize Usleep. Our algorithm is called SysSleep, and its pseudo-code is presented in
Algorithm 1. We illustrate the working of SysSleep by proving its optimality.

▸ Theorem 1. For a taskset Γ using ES-RMS, SysSleep yields the maximum possible forced-
sleep utilization Umaxsleep.

Proof. Consider the critical zone theorem [24] where, in the worst case, the requests of
all tasks arrive simultaneously. In order to be schedulable, a task τi must complete before
its deadline Di, i.e., its worst-cast response time Ri ≤ Di. If an ES-task is added to the
system, all tasks will now complete at a later time, which should still be less than Di for the
task to remain schedulable. Since the workload changes at every scheduling point, SysSleep
determines the maximum workload αti, that can be added to the system, such that a task
τi completes exactly at the end of each idle period t between Ri and Di. This maximum
workload corresponds to the slack utilization in the schedule up to time t. While calculating
αti, we consider a task’s execution as well as all other higher-priority tasks. For a task, the
maximum workload that can be added is chosen to be the maximum of these candidate
values. We refer to this as the maximum additional workload, ρmaxi =maxt(α

t
i) for a task τi.

For a taskset Γ, the maximum highest-priority workload that can be added also corresponds
to the maximum possible forced sleep Umaxsleep, which is theminimum of themaximum additional
workload of all the tasks, i.e., Umaxsleep =minτiεΓ(ρ

max
i ). Hence, Umaxsleep corresponds to the task,

τc with the lowest maximum additional workload, i.e. minτiεΓ(ρ
max
i ). If the added workload

exceeds Umaxsleep, then τc will miss its deadline and the taskset will become unschedulable. ◂

Example: Consider a taskset Γ consisting of two tasks τ1 = (1, 5) and τ2 = (1, 7). For τ1,
the only end-of-idle period to consider is 5.

α5
1 = (t −C1)/t = 0.8, ρmax1 =max(α5

1) = 0.8

For τ2, the end-of-idle periods to consider are 5 and 7.

α5
2 = [t − (C1 +C2)]/t = 0.6, α7

2 = [t − (2C1 +C2)]/t = 0.57, ρmax2 =max(α5
2, α

7
2) = 0.6

Hence, the maximum workload Umaxsleep that can be added is: Umaxsleep =min(ρ
max
1 , ρmax2 ) = 0.6

We now need to find the set of Tsleep values which yield the maximum forced-sleep
utilization Umaxsleep. For each task τi, let the end-of-idle period to which ρmaxi corresponds be
its critical deadline, tcriticali . Using this notation, we can state the following lemma:

▸ Lemma 2. If Tsleep is a sub-harmonic of tcriticali , then the ES-task τsleep can utilize all
the slack ρmaxi till tcriticali , such that τi completes at tcriticali .

Proof. If Tsleep is a sub-harmonic of tcriticali , the effective utilization [34] of τsleep in the
duration [0, tcriticali ] is equal to its utilization Usleep. The effective utilization of a task in a
duration [0, t] is the fraction of processor time used by a task in that duration. The actual
utilization of a task cannot exceed its effective utilization in any duration. Hence, τsleep can
optimally utilize all the slack ρmaxi in the duration [0, tcriticali ], such that its effective and
actual utilizations are equal in the duration, i.e. Usleep = ρmaxi . ◂

The calculated Umaxsleep corresponds to the task with the minimum ρmaxi . Let us call this
the critical task τc, and let the end-of-idle period to which ρmaxc corresponds be its critical
deadline, tcriticalc . Applying Lemma 2 in the context of τc, we can state the following corollary:

▸ Corollary 3. If Tsleep is a sub-harmonic of tcriticalc , then the ES-task, τsleep, optimally
utilizes all the slack, such that the critical task τc completes at tcriticalc .
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Algorithm 1 SysSleep Algorithm
1: procedure SysSleep(Γ)
2: for τi ∈ Γ do
3: (ρmaxi , tcriticali ) = CalculateMaxSlack(τi,Γ)

4: Umaxsleep =min(ρ
max
i , τi ∈ Γ) ▷ Max Sleep Utilization

5: tcritical = tcriticalargmin(ρmax
i ) ▷ Critical Deadline

6: return Umaxsleep, t
critical

7: procedure CalculateMaxSlack(τi,Γ)
8: /* S = slack, I = idle duration, BusyFlag is set if core busy, β = workload */
9: S = I = β = ∆ = 0, µ = 1, BusyFlag=TRUE

10: ω = Ci, ω
′ = 0

11: while ω <Di do
12: if BusyFlag == TRUE then ▷ Start of a busy period
13: ∆ =Di − ω

14: while ω <Di AND ∆ > 0 do
15: ω′ = ∑ij=0[Cj ∗ (⌊ω/Tj⌋ + 1)] + S ▷ Workload Calculation
16: ∆ = ω′ − ω,ω = ω′

17: BusyFlag = FALSE
18: else ▷ Start of an idle period
19: I =min∀j<i[(Tj ∗ ⌈ω/Tj⌉ − ω),Di − ω] ▷ Slack Computation
20: S = S + I, ω = ω + I, t = ω,β = ω − S

21: if β/t < µ then
22: µ = β/t, tcritical = t, ρ = 1 − µ ▷ Update the maximum additional workload
23: BusyFlag = TRUE
24: return ρ, tcritical

Unfortunately, choosing any sub-harmonic of tcriticalc may not guarantee schedulability for
other tasks in Γ. If the effective utilization of τsleep exceeds ρmaxk in the duration [0, tcriticalk ],
for another task τk ∈ Γ, then τk will become unschedulable. Hence, we need to choose Tsleep
such that the effective utilization of τsleep is always less than ρmaxi ∀τi ∈ Γ.

▸ Theorem 4. Choosing Tsleep as a common divisor of all tcriticali ∀τi ∈ Γ such that Tsleep ≤ T1,
always yields a schedule with the optimal forced-sleep utilization Umaxsleep.

Proof. From Lemma 2, choosing Tsleep as a common divisor of all tcriticali ensures that the
effective utilization Ueffsleep of the energy-saver task τsleep is equal to its maximum utilization
Umaxsleep in all the critical durations [0, tcriticali ]∀τi ∈ Γ. The optimal forced-sleep utilization is
given by, Umaxsleep =minτiεΓ(ρ

max
i ). Hence, Ueffsleep = U

max
sleep ≤ ρ

max
i ∀τi ∈ Γ. ◂

It is very important to note that, in practice, the choice of Tsleep is constrained by the
system constraint CSleepMin on the lower side and the period of the highest-priority task T1
(τsleep must execute at the highest priority) on the higher side. Given this system constraint,
we can state the following theorem:

▸ Theorem 5. Consider a taskset Γ, schedulable by an ES scheduler, running on a system
with the minimum deep sleep round-trip duration CSleepMin. Then for Γ, the lower bound on
the optimal worst-case maximum temperature Θbest

max achievable by ES schedulers is:

Θbest
max = (a/b)[(ebT

min
sleep(1−Umax

sleep) − 1)/(ebT
min
sleep − 1)] ∗ ebU

max
sleepT

min
sleep (8)
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Algorithm 2 ThermoSleep Heuristic
1: procedure ThermoSleep(Γ,CSleepMin, num_core)
2: while True do
3: Umaxsleep, t

critical
j = SysSleep(Γ) ▷ Invoke SysSleep

4: if tcriticalj ≤D′
j then break ▷ If critical deadline is within generalized deadline

5: if CSleepMin/U
max
sleep < T1 then ▷ Check if feasible solution exists

6: µ = ⌊Umaxsleep ∗ t
critical/CSleepMin⌋, ν = ⌈tcritical/T1⌉ ▷ Range of divisors

7: if µ < ν then
8: µ = ν

9: Θbest =∞

10: for k = µ to ν do
11: T ksleep = t

critical/k

12: Θbest
k = CalcTemperature(Umaxsleep, T

k
sleep) ▷ Lowest temperature for T ksleep

13: if Θbest < Θbest
k then

14: break
15: else
16: U bestsleep = FindSleepUtil(Γ, T ksleep, num_core) ▷ Find best Usleep for T ksleep
17: Θmax = CalcTemperature(U bestsleep, T

k
sleep)

18: if Θmax < Θbest then
19: Tsleep = T

k
sleep, Usleep = U

best
sleep, Θbest = Θmax ▷ Best Solution found

20: else
21: return NotSchedulable ▷ No feasible solution exists
22: return Tsleep, Usleep

23: procedure FindSleepUtil(Γ, Tsleep,m)
24: /* m = num_cores, Γi = tasks allocated to core i */
25: for i = 1 to m do
26: U isleep = FindBestSleep(Γi, Tsleep) ▷ Invoke FindBestSleep
27: return mini(U

i
sleep)

Proof. For a taskset Γ, SysSleep returns the maximum possible forced-sleep utilization
Umaxsleep. Hence, given the system constraint CSleepMin, the smallest feasible ES-task period is
Tminsleep = CSleepMin/U

max
sleep. From Equation 7, the worst-case maximum temperature Θmax is

minimized by simultaneously minimizing Tsleep and maximizing Usleep. Hence, substituting
the smallest feasible ES-task period, Tminsleep, and the largest schedulable forced-sleep utilization
Umaxsleep in Equation 7 yields the lower bound on the optimal worst-case maximum temperature
Θbest
max achievable by ES Schedulers, corresponding to the taskset Γ. ◂

From a thermal perspective, for a fixed Usleep, a smaller Tsleep yields a lower worst-
case maximum temperature. Hence, a possible thermally-effective solution with optimal
forced-sleep utilization can be the smallest common divisor of all tcriticali ∀τi ∈ Γ that lies in
the range [CSleepMin/U

max
Sleep, T1]. If CSleepMin/U

max
sleep > T1, then no feasible solution exists.

Note that, choosing Tsleep as any common divisor of tcriticali ∀τi ∈ Γ that lies in the range
[CSleepMin/U

max
Sleep, T1] would yield solutions with equivalent energy consumption. However,

the dependence of temperature on Tsleep would yield different thermal profiles.
Unfortunately, in many cases, no common divisor of the critical deadlines may lie in

[CSleepMin/U
max
Sleep, T1]. Hence, we present the ThermoSleep heuristic. ThermoSleep invokes
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SysSleep to compute Umaxsleep, along with the critical deadline tcriticalc corresponding to Umaxsleep.
ThermoSleep uses these values to return the smallest possible sub-harmonic of the critical
deadline tcriticalc corresponding to the critical task τc, that yields a thermal and energy-efficient
schedule. The pseudo-code for ThermoSleep is presented in Algorithm 2.

Given an ES-task period Tsleep ≤ T1, ThermoSleep uses the FindBestSleep (FBS) algorithm
to compute the optimal Csleep for a core, which allows a taskset Γ to be schedulable. The
pseudo-code for FBS is provided in Algorithm 3. We now prove the optimality of FBS.

▸ Theorem 6. For a taskset Γ schedulable by ES-RMS, with an ES-task τsleep having a period
Tsleep, FindBestSleep returns the optimal forced-sleep utilization U ′

sleep.

Proof. Consider the critical zone theorem [24] where, in the worst case, the requests of all
tasks arrive simultaneously. In order to be schedulable, a task τi must complete before its
deadline Di. Given that a new job of τsleep is dispatched every Tsleep, for each task τi ∈ Γ,
FBS determines the maximum workload that can be added to the taskset, such that τi
completes by t where, t is an integer multiple of Tsleep, i.e., (k ∗ Tsleep ≤ Di) or Di. This
gives the effective slack, αti, that τsleep can utilize, if τi and all higher-priority tasks complete
by t. For a task τi, the maximum highest-priority workload with period Tsleep that can be
added is the maximum of these calculated values ρmaxi = maxt(α

t
i). For a taskset Γ with

an ES-task period Tsleep, this workload corresponds to the maximum possible forced sleep,
U ′
sleep, which is the minimum of the ρmaxi of all the tasks. Hence, U ′

sleep = minτiεΓ(ρ
max
i ),

which corresponds to the task, τc ∣ c = argminτiεΓ(ρ
max
i ). If the added workload exceeds

U ′
sleep, then τc will miss its deadline and Γ will become unschedulable. ◂

For ES-RHS+, the total deep-sleep utilization USleepTotal is given by 1 −∑τi∈Γ(Ci/Ti).
Hence, for a schedulable taskset, ES-RHS+ guarantees a sleep schedule with optimal energy
savings. However, this deep-sleep utilization is not uniformly distributed over each period.
To reduce the worst-case maximum temperature, the ES-task utilization Usleep must be
increased, and its period Tsleep must be decreased. In Section 1.2 the schedulability test for
ES-RHS+ was discussed, and for each task the generalized deadline D′

i = Ti−(Tsleep−Csleep),
is a function of both Csleep and Tsleep. Hence, ThermoSleep invokes SysSleep multiple times to
compute Umaxsleep until the critical deadline of the critical task lies within its generalized deadline.
To calculate the generalized deadline, we choose Tsleep to be the smallest sub-harmonic of
the critical deadline in the feasible range [CSleepMin/U

max
sleep, T1], and Csleep = Umaxsleep ∗ Tsleep.

Given a forced-sleep period, Tsleep, ES-RMS can provide a higher forced-sleep utilization,
Usleep, than ES-RHS+ [12]. Hence, for a taskset Γ, in most cases, ES-RMS will yield a lower
worst-case maximum temperature compared to ES-RHS+. In practice, ES-RHS+ can yield
lower temperatures, as it utilizes all idle durations to put the processor into deep sleep.

5 Thermal-Aware Multi-Core ES Scheduling

Consider a task set Γ consisting of n periodic real-time tasks τ1, τ2, ..., τn that need to be
scheduled on a homogeneous multi-core processor with m cores, M1,M2, ...,Mm. Each core
Mk has an ES-task, τsleep,k, which has a forced-sleep duration of Csleep,k ≥ CSleepMin every
Tsleep,k. As mentioned in Section 1.2, two types of multi-core ES scheduling problems were
defined in [12]. In this section, we analyze the thermal implications of SyncSleep and Indsleep
scheduling, and propose techniques to derive thermally-effective partitioned schedules.

In multi-core processors, heat also dissipates between adjcacent cores, and the rate of
dissipation depends on the temperature differences between them. Hence, each core can
be modeled using the RC model with the addition of thermal resistances between adjacent
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Algorithm 3 FindBestSleep Algorithm
1: procedure FindBestSleep(Γ,CSleepMin, Tsleep)
2: for τi ∈ Γ do
3: (ρmaxi , tcriticali ) = CalculateSlack(τi,Γ, Tsleep)
4: Usleep =min(ρ

max
i , τi ∈ Γ) ▷ Max Sleep Utilization

5: if Usleep ∗ Tsleep ≥ CSleepMin then ▷ Check if feasible solution exists
6: return Umaxsleep ∗ Tsleep
7: else
8: return NotSchedulable
9: procedure CalculateSlack(τi,Γ, Ts)

10: /* S = slack, I = idle duration, BusyFlag is set if core busy, β = workload */
11: S = I = β = ∆ = 0, µ = 1, BusyFlag=TRUE, ω = Ci, ω

′ = 0
12: while ω <Di do
13: if BusyFlag == TRUE then ▷ Start of a busy period
14: ∆ =Di − ω

15: while ω <Di AND ∆ > 0 do
16: ω′ = ∑ij=0[Cj ∗ (⌊ω/Tj⌋ + 1)] + S ▷ Workload Calculation
17: ∆ = ω′ − ω,ω = ω′

18: BusyFlag = FALSE
19: else ▷ Start of an idle period
20: Ω = {j ∈ Z+ ∣ (j − 1) ∗ Ts ≤Di < j ∗ Ts}

21: I =min∀j∈Ω[(j ∗ Ts ∗ ⌈ω/j ∗ Ts⌉ − ω)] ▷ Slack computation
22: S = S + I, ω = ω + I, t = ω,β = ω − S

23: if β/t < µ then
24: µ = β/t, ρ = 1 − µ ▷ Update the maximum additional workload
25: BusyFlag = TRUE
26: return ρ

cores [16]. Let the instantaneous temperature on each core be Θj , for j = 1,2, ...,m. Using
Fourier’s Law, the differential equation for each core’s temperature can be given by:

dΘj(t)

dt
=
Pj(t)

C
−

Θj(t) −ΘA

RC
−

m

∑
k=1

Θj(t) −Θk(t)

RjkC
(9)

where, Pj is the instantaneous power dissipated by the core, and Rjk is the thermal resistance
between the cores j and k. For non-adjacent cores one can reasonably assume there is no
heat dissipation between them and hence, Rjk =∞ [16].

5.1 SyncSleep Scheduling
For SyncSleep scheduling, the forced-sleep task must be synchronized across all cores [12]. As
the sleep transition is synchronous, for all cores Tsleep,k = Tsleep, and the initial ES-task phase
can be taken as φsleep,k = 0 [12]. Additionally, the minimum amount of time for which the
system can be in deep sleep is dictated by the core which has the least forced-sleep duration
[12]. Hence, if the system synchronous sleep CSyncSleep = minmk=1(Csleep,k) ≥ CSleepMin, then
the minimum guaranteed deep-sleep utilization is given by minmk=1(Csleep,k)/Tsleep.

Based on the synchronous-sleep constraint, in the worst case, we can assume that all
the cores are in deep sleep for the durations [kTsleep, kTsleep +CSyncSleep), and busy from
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Algorithm 4 SyncSleep Partitioning Heuristic
1: procedure PartitionTaskset(Γ,CSleepMin,m)
2: /* m = number of cores, Γi = tasks allocated to core i */
3: Ts = 1 ▷ Set forced-sleep period to 1
4: Γi∀i ∈ 1 to m = MaxSyncSleep(Γ,CSleepMin, Ts,m) ▷ from [12]
5: Us, Ts = ThermoSleep(Γ,CSleepMin,m) ▷ Invoke ThermoSleep
6: return Us, Ts ▷ SyncSleep task parameters

[kTsleep +CSyncSleep, (k + 1)Tsleep). Hence, all cores will have the same worst-case execution
profile (as illustrated in Figure 2(a)), and we can assume that in the worst case, at any time
instant, all cores share the same temperature. Thus, the worst-case inter-core temperature
difference is always zero, and the model reduces to the uniprocessor thermal model. Hence,
from a worst-case perspective, we can consider the entire system as one thermal unit. Applying
these assumptions in Equation 9, the worst-case SyncSleep temperature model is given by:

dΘj(t)/dt = Pj(t)/C − (Θj(t) −ΘA)/RC (10)

Figure 2(b) presents an example using SyncSleep ES-RMS for a quad-core system with
cores Mi, i = {1,2,3,4}. The taskset Γ = {τ1(6,10), τ2(7,10), τ3(5,10), τ4(4,10)} is used,
such that, during partitioning, each core receives one task (τi is assigned to Mi). Due to
the synchronous nature of forced sleep, all cores have similar temperature profiles, making
the heat dissipation between cores negligible. Hence, like the uniprocessor case, the problem
reduces to finding a forced-sleep task τsleep which minimizes Tsleep while maximizing Usleep.
However, given that we have multiple cores, partitioning the tasks among them also plays
a major role in determining the thermally-effective τsleep. The temperature minimization
problem can be stated as the following task-partitioning problem: “Find a partition that has
a synchronized ES-task which minimizes the worst-case maximum temperature, such that
the workload allocated to each core can be scheduled feasibly by an ES Scheduler.”

The stated partitioning problem is a more constrained form of the feasibility problem in
multi-core processor scheduling, which is known to be NP-hard in the strong sense [18][25].
Hence, the thermal-aware SyncSleep scheduling problem is also NP-hard. Consider the trivial
case where all tasks have the same periods, with different computation times. In this case,
choosing the optimal Tsleep is trivial (from Theorem 4, it is a sub-harmonic of the task
period). Given Tsleep, the temperature across all cores will be minimized if all cores have
the same load. Hence, the problem reduces to calculating the optimal balanced partition for
independent tasks with known computation times, which is known to be equivalent to the
Partition problem [21] which is NP-Complete [21].

We now present a two-stage heuristic for the partitioning problem:
Partitioning for Thermal Performance: In the first stage, we choose the best possible

hypothetical Tsleep = 1 to find the best synchronous forced sleep that a partitioning heuristic
can achieve. Theorem 4 states that, on a single core, the optimal Usleep is achieved when
Tsleep is a common divisor of the critical deadline. Since 1 is a divisor of all integers, choosing
Tsleep = 1 enables a heuristic to achieve its best possible forced-sleep utilization. If a taskset
cannot be scheduled when Tsleep = 1, we consider it unschedulable. Setting Tsleep = 1 and
maximizing the forced-sleep utilization is similar to the energy minimization problem for
SyncSleep Scheduling [12]. To realize energy savings and minimize temperature in multi-core
systems, load balancing is often used [12]. Worst-Fit Decreasing (also referred to as WFD or
List Scheduling when the number of cores is fixed a priori) is commonly used to obtain a
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Figure 2 SyncSleep Scheduling for a quad-core system with cores Mi.

load-balanced partition. WFD allocates tasks to the core with the least utilization, one by
one in non-increasing order of their utilization. For ES Schedulers, the period ratios also
play an important role in dictating the forced-sleep utilization, something that WFD does
not take into account. In [12], the MaxSyncSleep (MSS) partitioning heuristic was proposed.
Instead of using utilization to allocate tasks to cores, MSS measures the impact of a task’s
allocation on the synchronous forced-sleep duration.

Choosing the SyncSleep Period: In the second stage, we find a thermally-effective
Tsleep. For an m-core system, let the best possible synchronous forced-sleep utilization
(setting Tsleep = 1) obtained by a partitioning heuristic A be UmaxSyncSleep, which corresponds to
the core k with the minimum forced-sleep utilization. The feasible range for Tsleep can now
be given by [CSleepMin/U

max
SyncSleep, T1]. To find a good value for Tsleep, we run ThermoSleep

on the partition. The proposed partitioning technique is described in Algorithm 4.

5.2 IndSleep Scheduling
Some processors allow each core to individually transition into deep sleep, enabling better
energy savings. Hence, each core Mk has a forced-sleep task, τsleep,k, which has a forced-sleep
duration of Csleep,k ≥ CSleepMin every Tsleep,k, with a phasing φsleep,k. Note that, compared
to SyncSleep scheduling, each core’s forced-sleep task can have a different Csleep,k, as well
as a different phasing φsleep,k. Hence, we need to consider heat dissipation between cores.
Thus, the IndSleep thermal model is given by Equation 9, and takes into account both heat
dissipation to the environment, as well as between cores.

For IndSleep scheduling, the thermal-aware scheduling problem can be defined as follows:
“Find a partition and forced-sleep task parameters (including phasing) on each core, that
minimizes the maximum temperature of the system, under the constraint that the workload
allocated to each core can be scheduled by an ES Scheduler.”

In [12], it was proved that using ES-RHS+ can yield an energy-optimal schedule for all
feasible partitions. A partition is feasible if the tasks allocated to each core are schedulable.
However, unlike the energy-minimization problem, all the feasible partitions are not optimal
from a thermal perspective. This is due to the dependence of temperature on the ES-task
period, as well as the execution pattern between cores, i.e. relative ES-task phasing.
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Figure 3 IndSleep Scheduling with uniform sleep periods for a quad-core system with cores Mi.

The heat flow between two objects is primarily dependent on their thermal properties as
well as the temperature difference between them. At any instant, the temperature difference
between two adjacent cores will always be less than the temperature difference between a
core and the environment. This is based on the practical assumption that the environmental
temperature is always lower than that of any core. Thus, we can safely assume that heat
dissipation to the environment is the dominant factor for cooling. Hence, from an optimization
standpoint, we first optimize the schedule on each core to reduce its own temperature, and
then optimize the schedule between cores to ensure maximal heat dissipation between them.
Based on this practical assumption, we propose a two-stage solution:

Partitioning for Thermal Performance: The objective of partitioning is to ensure
that the worst-case maximum temperature of the system is minimized. If there were no heat
dissipation between cores, then the worst-case maximum temperature Θk

max on a core k is a
function of Tsleep,k and Usleep,k. A balanced partition helps ensure that all cores have similar
Θk
max. In an unbalanced partition, a core with a significantly lower Usleep,k would yield a

higher temperature, thus raising the maximum temperature of the system. This is similar to
the SyncSleep problem, and hence is also NP-Hard. Hence, like SyncSleep, we initially set
Tsleep,k = 1 on each core, and use MaxSyncSleep [12] (or WFD) to create a balanced partition.
Applying ThermoSleep to all the cores together gives a single Tsleep that is suitable for all
the cores. We refer to this as uniform sleep. However, since each core can independently
transition into deep sleep, each core’s ES-task can have a different period, that we refer to as
non-uniform sleep. These non-uniform sleep periods Tsleep,k can be calculated by applying
ThermoSleep to each core individually. FindBestSleep is then used to obtain each Csleep,k
using the corresponding Tsleep,k. While uniform sleep ensures that all cores have a similar
temperature profile, non-uniform sleep can allow each core to attain a lower temperature.

Forced-Sleep Phasing: The phasing between ES-tasks plays an important role in the
heat dissipation between cores. In the worst case, we can assume that each core Mj , j = 1
to m is in deep sleep for the durations [φsleep,j + kTsleep,j , φsleep,j + kTsleep,j +Csleep,j), and
busy from [φsleep,j + kTsleep,j + Csleep,j , φsleep,j + (k + 1)Tsleep,j). To ensure maximal heat
dissipation between adjacent cores, the temperature difference between them needs to be
maximal. For two adjacent cores i and j, the largest temperature difference between them
occurs when core i is at the start of its forced-sleep period and core j is at the end of its
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forced-sleep period. Hence, if τsleep,i starts exactly after τsleep,j ends, then the instantaneous
temperature difference between the cores can be maximized. This leads to an execution
pattern where core i is busy while core j is in deep sleep and vice versa.

Figure 3(b) presents an example using IndSleep ES-RMS with uniform periods for a
quad-core system with coresMi, i = {1, 2, 3, 4}. The taskset Γ = {τ1(6, 10), τ2(7, 10), τ3(5, 10),
τ4(4,10)} is used, such that, during partitioning, each core receives one task (τi is assigned
to Mi). Note that, each core has its own distinct thermal profile. Additionally, phasing the
ES-task on each core, to minimize execution overlap can yield thermal benefits. For the
IndSleep example, the odd-even execution pattern illustrated in Figure 3(a) is noteworthy,
where execution overlap is minimized by ensuring that odd-numbered cores are busy (i.e.
execute tasks), while even-numbered cores are in deep sleep, and vice-versa. From the thermal
profile, observe that this phasing causes the temperature difference between adjacent cores
to be maximized, thus yielding better heat dissipation between adjacent cores.

As a simplification, we formulate the phasing problem as one of: “minimizing the execution
(or forced-sleep) overlap between adjacent cores”. By considering busy durations as hot and
forced-sleep durations as cool, the execution overlap metric captures the durations where
hot regions overlap, hence acting as a proxy for temperature difference. In most processor
designs, cores are rectilinear, and adjacent cores are of the same size. Hence, to compute
a thermally-effective phasing, the overlap between every pair of adjacent cores needs to
be minimized. This execution overlap (also referred to as overlap) needs to be calculated
over the relative hyperperiod, TR, of all the cores. We define the relative hyperperiod as the
least common multiple of all the cores’ forced-sleep periods. In the simplest case, consider a
dual-core system, with two adjacent cores. Let the cores beM1 andM2, and their forced-sleep
tasks be τsleep,i = (Csleep,i, Tsleep,i) with phasing φsleep,i where, i = 1,2. Assume that all the
terms are integers, which is reasonable as we can convert timescales to arbitrarily small units
(like nanoseconds). We have four possible cases:

1) Tsleep,1 = Tsleep,2, i.e. uniform sleep. The phasing with the minimum overlap is
computed over TR = Tsleep,1 = Tsleep,2. The minimum overlap possible is TR−Csleep,1−Csleep,2.
Then, φsleep,1 = 0, φsleep,2 = Csleep,1, is one of the phasings which guarantees minimum overlap.

2) Tsleep,1 and Tsleep,2 are relatively prime, i.e. non-uniform sleep whose greatest common
divisor is 1. The minimum overlap needs to be computed over TR = Tsleep,1 ∗ Tsleep,2. In this
case, any relative integer phasing of τsleep,1 and τsleep,2 guarantees the same overlap, which
is the minimum overlap. This stems from the fact that all possible relative integer phasings
between two periods are encountered, before the relative phasing is equal to that at the start.

3) Tsleep,1 and Tsleep,2 are harmonic, i.e. non-uniform sleep where one is a multiple of the
other. Let Tsleep,2 = a∗Tsleep,1, a ∈ Z+. Hence, TR = Tsleep,2, and only one iteration of τsleep,2
occurs in TR. Then φsleep,1 = 0, φsleep,2 = Csleep,1 can guarantee the minimum overlap.

4) Tsleep,1 and Tsleep,2 are not relatively prime and not harmonic, i.e. non-uniform
sleep which share a common divisor, but one is non-divisible by the other. Here, TR <

Tsleep,1 ∗ Tsleep,2. In this case, no property can be stated on the relative phasing which
guarantees minimum overlap.

Based on the above properties, we see that while simple approaches work for phasing
uniform sleep, using non-uniform sleep requires more complex optimization techniques.

However, using uniform sleep does not always guarantee lower execution overlap than
using non-uniform sleep. This can be seen from the following 3 cases:

Case 1: Uniform Sleep performs better than Non-Uniform Sleep. Consider a taskset with
two tasks, τ1 = (6,9) and τ2 = (10,15). τ1 is assigned to core M1, and τ2 to core M2. In the
uniform sleep case the best ES-task periods in terms of sleep utilization are τsleep,1 = (3,9)
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and τsleep,2 = (2.5,9). Using the best possible phasing, achieves a guaranteed minimum
execution overlap of 3.5 every 9 (38.89%). In the non-uniform case, the best ES-task periods
are τsleep,1 = (3,9) and τsleep,2 = (5,15). By searching the entire search space of unique
relative integer phasings, the minimum execution overlap achievable is 20 every 45 (44.44%).
Hence, in this case, using uniform sleep provides lower execution overlap.

Case 2: Uniform Sleep performs equal to Non-Uniform Sleep. Consider a taskset with
two tasks, τ1 = (6,9) and τ2 = (9,12). τ1 is assigned to core M1, and τ2 to core M2. In the
uniform sleep case, the best ES-task periods in terms of sleep utilization are τsleep,1 = (3,9)
and τsleep,2 = (1.5,9). By using the best phasing, we can achieve a guaranteed minimum
execution overlap of 4.5 every 9 (50%). In the non-uniform case, the best ES-task periods are
τsleep,1 = (3,9) and τsleep,2 = (3,12). By searching the entire search space of unique relative
integer phasings, the minimum execution overlap achievable is 18 every 36 (50%). Hence,
both provide a solution with the same execution overlap.

Case 3: Uniform Sleep performs worse than Non-Uniform Sleep. Consider a taskset with
two tasks, τ1 = (6,9) and τ2 = (9,11). τ1 is assigned to core M1, and τ2 to core M2. In the
uniform sleep case, the best ES-task periods are τsleep,1 = (3,9) and τsleep,2 = (1,9). Using
the best phasing, achieves a guaranteed minimum execution overlap of 5 every 9 (55.55%). In
the non-uniform case, the best ES-task periods are τsleep,1 = (3,9) and τsleep,2 = (2,11). By
searching the entire search space of unique relative phasings, the minimum execution overlap
achievable is 54 every 99 (54.54%). Hence, in this case using non-uniform sleep provides
lower execution overlap.

Since there is no exact solution for choosing ES-task periods for minimizing execution
overlap, we examine the properties of using uniform sleep versus non-uniform sleep:

Best Phasing: While uniform sleep can be phased easily and optimally (using the odd-even
execution pattern from Figure 3(a)) for a rectilinear multi-core processor, no such simple
technique can be used for non-uniform sleep.

Temperature Profile: Uniform sleep will ensure that all cores have similar temperatures.
However, using non-uniform sleep allows each individual core to choose the best Tsleep, to
further reduce its temperature, based on the tasks allocated to it.

6 Comparative Evaluation

We now evaluate our proposed techniques on the basis of schedulability and worst-case
maximum temperature Θmax with an offset. Results are obtained using both static worst-
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case analysis as well as dynamic simulations using Hotspot [37]. Static analysis experiments
were performed on 100,000 tasksets generated randomly using UUniFast-Discard [14] for each
data-point. In a taskset, each task is randomly assigned a period between 15 and 400 time
units, and the number of tasks varies from 1 to 20. CSleepMin is set to 5 time units. The
system thermal parameters were set to a = 2 and b = 0.228 [8]. To the best of our knowledge,
no other proactive techniques exist for designing thermal-aware fixed-priority sleep schedules.
Hence, we compare against the purely energy-efficient design methodology proposed in [12].

6.1 Static Worst-Case Analysis

Uniprocessor Comparisons: We compare ES-RMS and ES-RHS+ with and without using
ThermoSleep on the basis of schedulability, and the worst-case maximum temperature, Θmax.
Figure 4 plots schedulability versus taskset utilization. In terms of schedulability: ES-RMS
performs better than ES-RHS+. Observe that, using ThermoSleep, ES-RMS can schedule
up to 62.5% more task sets than before. Figure 5 plots the ES-task utilization versus taskset
utilization for tasksets schedulable by all techniques. By using SysSleep, ThermoSleep-based
techniques yield slightly greater ES-task utilization —up to 3.3% greater for ES-RMS. Figure
6 plots Θmax versus taskset utilization for tasksets schedulable by all techniques. Despite the
ES-task utilization being similar, by choosing a smaller ES-task period, ThermoSleep can
achieve significantly lower temperatures —on average up to 4○K lower for ES-RMS, while
simultaneously yielding better energy savings. Figure 6 also plots the average of the lower
bound on Θmax for the tasksets. On average, the worst-case deviation between the solution
provided by ES-RMS and ThermoSleep, and the optimal lower bound was 0.028○K. Figure
7 plots Θmax as a function of CSleepMin, when taskset utilization Utaskset = 0.4. Observe
that, despite varying CSleepMin, our approach yields solutions with a worst-case temperature
difference of 0.067○K compared to the optimal lower bound.

Multi-core SyncSleep Comparisons: We compare ES-RMS and ES-RHS+ on the
basis of schedulability and the worst-case maximum temperature, Θmax. We consider each
technique using both WFD and Max-SyncSleep (MSS) for task partitioning, with and without
using ThermoSleep. For a quad-core (m = 4) processor, Figure 8 plots schedulability versus
taskset utilization, and Figure 10 plots the utilization of the synchronized ES-task USyncSleep.
In terms of schedulability and USyncSleep ES-RMS performs better than ES-RHS+ for all
partitioning techniques. For partitioning techniques, MSS marginally dominates WFD in
terms of schedulability and USyncSleep, both with and without using ThermoSleep. Using
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Figure 8 % of task sets schedulable w.r.t
taskset utilization, for multi-core SyncSleep
scheduling (m = 4)
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Figure 9 Worst-case maximum temperat-
ure w.r.t taskset utilization, for multi-core
SyncSleep scheduling (m = 4)
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Figure 10 Synchronized ES-task utiliza-
tion w.r.t taskset utilization, for multi-core
SyncSleep scheduling (m = 4)
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Figure 11 Worst-case maximum temper-
ature w.r.t taskset utilization, for multi-core
SyncSleep scheduling (m = 8)

ThermoSleep provides marginally better USyncSleep —up to 11.59% greater for ES-RMS with
MSS. Figures 9 and 11 plot Θmax, versus taskset utilization, for a quad-core (m = 4), and
an octa-core (m = 8) processor respectively. Using ThermoSleep can give significantly lower
Θmax —on average up to 2.89○K lower for ES-RMS with MSS for m = 4.

Multi-core IndSleep Comparisons: We compare ES-RMS and ES-RHS+ using Max-
SyncSleep to generate partitions. We consider using both uniform and non-uniform sleep for
each core’s ES-task. MSS along with ThermoSleep is used to determine the sleep periods.
Figure 12 plots the percentage of schedulable tasksets. Note that using non-uniform sleep
allows for greater schedulability —up to 1.2% greater for ES-RMS. Figure 13 plots Θmax

without considering inter-core heat dissipation. Note that, while ES-RHS+ provides maximal
energy savings, in all cases ES-RMS yields lower temperatures than ES-RHS+. Additionally,
due to better use of each core’s idle durations, non-uniform sleep provides slightly lower
temperatures than uniform sleep —up to 0.08○K.

6.2 Dynamic Simulations
To perform dynamic thermal simulation, we have designed a real-time multi-core scheduling
simulation tool called Inferno (v1.0). Based on the processor floor-plan, prior temperature,
power consumption in the interval and the interval length, Inferno uses Hotspot [37] to
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Figure 12 % of task sets schedulable w.r.t
taskset utilization, for multi-core IndSleep
scheduling (m = 4)
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Figure 13 Worst-case maximum temper-
ature w.r.t taskset utilization, for multi-core
IndSleep scheduling (m = 4)
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Figure 14 Dynamic simulation: maximum
temperature w.r.t taskset utilization (m = 4)
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Figure 15 Dynamic simulation: average
power w.r.t taskset utilization (m = 4)

calculate each core’s temperature, in each scheduler-simulation interval. Inferno supports
fully-partitioned fixed-priority scheduling. Simulation parameters such as the number of cores,
simulation cycles, simulation granularity, CSleepMin, floorplan and thermal configuration
can be specified by the user. The power consumption of each core for different operating
frequencies in the busy, idle and deep-sleep states are specified in a look-up table. Based on
the taskset and partition provided by the user, Inferno provides a trace of the power and
temperature values at each simulation instant. The source code for Inferno can be found at
https://github.com/sandeepdsouza93/Inferno.

In order to use realistic power values, we considered the automotive benchmark from the
MiBench suite [19]. The benchmark was compiled and executed in the SniperSim [7] cycle-
accurate x86 emulator (for a Nehalem-class x86 processor) for a range of frequency settings
(1.22-2.66 GHz). The execution trace obtained from SniperSim is then fed to the McPAT [26]
power simulator, which calculates the power consumption based on an x86 Nehalem power
model (45 nm technology node). To model the dependency of static power on temperature,
McPAT power calculations were done for the range of temperatures: 300-400○K, and the
values were stored in a look-up table. Inferno uses these values to compute the core power
consumption value, based on the previously calculated core temperature. The scheduling
simulation granularity was set to 10µs, and Hotspot’s default thermal configuration was used.

We have simulated a quad-core processor, with the floor-plan consisting of cores laid out
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in a square grid (as shown in Figures 2(a) and 3(a)). 10,000 randomly generated tasksets
were considered, each containing 1 to 20 tasks. The taskset utilization varied from 0.8 to 3.2.
Each taskset was simulated up to thermal steady state (Hotspot warm-up was considered).

Figure 14 plots maximum temperature versus taskset utilization. Observe that ES-RMS
IndSleep with non-uniform sleep yields the lowest temperature. We also compared techniques
from [12] following a purely energy-efficient design (UniOrig), and it returned the highest
temperature —on average up to 3.91○K of difference between ES-RMS IndSleep without
thermal considerations (UniOrig), and ES-RMS IndSleep with non-uniform sleep. We also
compare our techniques with SysClock, which is the energy-optimal fixed-priority technique
for static frequency scaling. We simulate SysClock with RMS where each core could have its
own frequency. SysClock yields higher temperatures than IndSleep —up to 1.5○K higher.

Figure 15 plots the average power consumption versus taskset utilization. We find that by
better utilizing the idle durations, ES-RHS+ IndSleep yields lower power consumption than
ES-RMS SyncSleep —up to 5.04 W lower. ES-RHS+ IndSleep on average yields a power
consumption that is 8.52 W lower than SysClock with a maximum difference of 21.74 W. This
highlights the importance of energy-saving techniques based on sleep states. Our techniques
also provide greater power savings compared to the purely energy-efficient design methodology
presented in [12] —up to 8.36 W additional power-savings for ES-RHS+ IndSleep. Note that,
although ES-RHS+ IndSleep provides greater energy savings, ES-RMS IndSleep yields lower
temperatures. Additionally, even though SysClock consumes significantly more power than
ES Schedulers, they both yield similar maximum temperatures. This highlights the fact that
energy efficiency does not always imply lower temperatures.

7 Conclusions

In this paper, we analyze the thermal implications of fixed-priority energy-saving schedulers,
which utilize the processor’s deep-sleep state to save energy. We infer design choices from a
well-known thermal model, and present two techniques for designing thermally-effective ES
Schedulers: the SysSleep algorithm to provide optimal sleep utilization and the ThermoSleep
heuristic to design a thermally-effective ES-task. Specifically, we derive a lower bound on the
optimal maximum temperature, thus quantifying the best thermal performance achievable by
ES Schedulers. In the multi-core context, we extend our analysis to two classes of scheduling
problems [12]: SyncSleep, where cores need to synchronously transition into deep sleep, and
IndSleep, where cores can independently transition into deep sleep. We consider the impact
of both task partitioning and ES-task phasing on temperature. In the SyncSleep context, we
observe that the synchronous deep-sleep constraint reduces the temperature-minimization
problem to the energy-minimization problem, with the exception of the synchronous ES-task
period calculation. On the other hand, while energy minimization is straightforward in the
IndSleep context (all feasible partitions are optimal using ES-RHS+[12]), the same cannot be
said for temperature minimization. The dependence of temperature on the ES-task periods
and relative phasing makes the IndSleep problem non-trivial.

Since we focus on fully-partitioned scheduling, our proposed framework can be extended
to heterogeneous multi-core processors. Additionally, our techniques do not require significant
knowledge of a system’s thermal parameters, and hence are applicable to a range of multi-core
platforms. Static analysis and dynamic simulation validate our approach, yielding lower
temperatures and better energy savings than both the purely energy-efficient ES Scheduler
design [12], and frequency scaling based techniques [29]. Our results show that, while energy
savings is key to lower temperatures, not all energy-efficient solutions yield low temperatures.
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