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Abstract
Emerging Cyber-Physical Systems (CPS) such as con-
nected vehicles and smart cities span large geographical
areas. These systems are increasingly distributed and in-
terconnected. Hence, a hierarchy of cloudlet and cloud
deployments will be key to enable scaling, while simul-
taneously hosting the intelligence behind these systems.
Given that CPS applications are often safety-critical, ex-
isting techniques focus on reducing latency to provide
real-time performance. While low latency is useful, a
shared and precise notion of time is key to enabling coor-
dinated action in distributed CPS. In this position paper,
we argue for a global Quality of Time (QoT)-based ar-
chitecture, centered around a shared virtualized notion
of time, based on the timeline abstraction [1]. Our ar-
chitecture allows applications to specify their QoT re-
quirements, while exposing timing uncertainty to the ap-
plication. The timeline abstraction with the associated
knowledge of QoT enables scalable geo-distributed co-
ordination in CPS, while providing avenues for fault tol-
erance and graceful degradation in the face of adversity.
1 Introduction
Cyber-Physical Systems (CPS) [2] involve the cyber com-
ponents of computing and communication interacting
with and controlling elements in the physical world.
Emerging CPS are connected to the Internet, and con-
sist of multiple networked sensing, actuation and com-
putational components spanning large geographical ar-
eas. These systems range from small-scale multi-robot
systems [3][4][5] to city-scale connected vehicles and
planetary-scale collaborative augmented reality [6]. The
scale of these systems makes the cloud well-suited for en-
abling coordination among multiple smaller entities [8].
The future holds promise for CPS with possibly even

inter-planetary-scale coordination. Consider the recently
launched Breakthrough Starshot Initiative [9]. The ini-
tiative proposes to send laser-propelled nano-spacecraft
to Alpha Centauri. While there are a number of engi-
neering challenges still to be solved, one can envision
a global network of laser arrays being used to send such
nano-spacecraft into deep space. To propel fleets of nano-
spacecrafts, it will be essential to precisely coordinate the
direction and intensity of these geographically-distributed
laser arrays, while taking into account the effects of the
earth’s rotation and atmospheric interference.
Reliable planetary-scale coordination requires a shared
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Figure 1: The scale of coordination in time and space
and precise notion of time [1]. However, existing cloud-
enabled CPS design methodologies [10] focus on reduc-
ing the latency of computation, and overlook the impor-
tance of shared time. While technologies likes GPS and
the Precision Time Protocol [11] have enabled networked
devices to share a precise notion of time, trends like
networking delays [12], multi-core processors [13] and
virtualization [14] introduce greater timing uncertainty.
This uncertainty is rarely visible to applications, andmost
systems rely on best-effort time synchronization.

In [1], we introduced the concept of Quality of Time
(QoT) as the end-to-end uncertainty in the notion of time
delivered to an application by the system. Building on the
notion of QoT, the QoT Architecture [1], centered around
a shared virtualized notion of time, allows applications
to specify their timing requirements, while delivering the
required QoT and exposing timing uncertainty to appli-
cations. We argue that the knowledge of QoT enables
applications to adapt and be fault-tolerant, while allow-
ing the system to manage resources efficiently.

Figure 1 shows CPS applications with diverse QoT
requirements, spanning different geographical scales.
Hence, we posit that there is a strong need for aQoT-based
CPS framework for distributed coordination at scale, with
APIs based on a shared notion of time.

The contributions of this paper are as follows:
1. We argue for a global shared-time architecture to

enable local to planetary-scale coordination in CPS.
2. We illustrate the utility of Quality of Time in pro-

viding fault tolerance and reliable performance in
geo-distributed and coordinated CPS.

3. We discuss the challenges in extending our timeline-
based QoT Architecture in the context of enabling
reliable cloud-based coordination at scale in CPS.

We build on prior work [1], and focus on the requirements
and architectural choices which would enable cloud-
based scalable coordination in geo-distributed CPS, using



a shared notion of time along with the associated QoT.

2 Background
In this section, we review the trends in cloud-enabled
CPS, and describe the QoT Architecture proposed in [1].

2.1 Cyber-Physical Systems and the Cloud
Embedded platforms enable the deployment of compu-
tation and data-intensive CPS applications in resource-
constrained environments. These platforms range from
low-power micro-controllers [15][16] and sensor nodes
[17][18] to powerful multi-core platforms [19][20][21].
While these platforms in conjunction with available

software enable rapid prototyping and deployment, they
are not sufficient to enable the deployment of complex ap-
plications at large geographical scale. This is especially
true when coordinated action must be performed by mul-
tiple distributed nodes [3]. To achieve coordination at
scale, it is essential that an intelligent controller, which
may be centralized or distributed, dictate coordination
policies and perform the required orchestration.
The emergence of the public cloud has made possible

the deployment of elastically-scalable software services.
Public cloud [22][23] providers such as Amazon, Mi-
crosoft and Google offer a range of virtualized computing
services, thus lowering the entry bar for innovation in the
software services domain. A similar trend is emerging for
the Internet of Things (IoT) [24], withmajor cloud service
providers offering specialized services for IoT [25][26].
Most commercially available frameworks focus on di-

rectly connecting sensing/actuation endpoints to the In-
ternet [25][26]. Given that the number of such endpoints
is poised to grow faster than network bandwidth, this
approach is inherently not scalable [27]. Rather, applica-
tion functionality needs to be partitioned among different
components. Additionally, most CPS are safety-critical,
and require low-latency computation [2]. In the mo-
bile computing domain, cloudlets [7] have been proposed
to provide high-performance low-latency computation.
Cloudlets are trusted, resource-rich computational clus-
ters that are in close physical proximity to the mobile
user [7]. The low-latency requirements of CPS make the
use of a hierarchy of cloudlets and the cloud useful [10].
Additionally, deploying cloudlets at the edge reduces the
upstream bandwidth demand at the cloud [28].
While low latency is critical for real-time performance,

very few guarantees on latency can be provided in the In-
ternet [7]. On the other hand, advances in clock synchro-
nization [11] havemade it possible to provide precise time
over a network with good reliability [29]. Programming
applications based on a shared notion of time enables
distributed components to specify timing constraints in
terms of the shared notion of time, enabling fine-grained
coordination with fewer messages exchanged [30].
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Figure 2: Timeline-based QoT Architecture [1]
2.2 Timeline-based QoT Architecture
As proposed in [1], a timeline is a virtual reference time
base that is not necessarily tied to a specific reference
device or time system. This abstraction enables de-
velopers to implement coordinated applications easily.
Consider an application that needs to perform coordi-
nated actions by its distributed components. All of these
components bind to a common timeline, each specifying
its respective QoT requirements. The timeline abstrac-
tion [1] abstracts away low-level synchronization details,
while the underlying framework orchestrates the clock-
synchronization services and clocks to ensure that QoT
requirements are met, while making the actually achieved
QoT visible to the application. This is fundamentally
different from existing best-effort clock-synchronization
techniques [11][12]. Application-specified QoT require-
ments open up the possibility of network and system or-
chestration to ensure that application requirements are
met, while managing resources efficiently.

The QoT Architecture supports multiple timelines.
This enables different coordinating sub-groups with vary-
ing QoT requirements to each have their own virtual time
reference and co-exist on the same infrastructure [1]. The
QoT Architecture consists of three distinct components:

1. Clocks are used to expose timekeeping hardware,
and provide timekeeping and time-stamping capabilities.
Clocks also expose their parameters such as accuracy, pre-
cision and drift, which enable uncertainty calculations.

2. System Services are responsible for distributing
timeline meta-data, message passing, quantifying timing
uncertainties, and synchronizing clocks across nodes.

3. QoT Core acts as a bridge between all the system
components, applications and the operating system. It is
responsible for application scheduling as well as main-
taining synchronization and timeline state.

The architectural components present on each node
along with their interactions are illustrated in Figure 2.
Based on this architecture, we developed a prototype
QoT Stack for Linux [1], which focused on implement-
ing necessary functionality over a Local-Area Network
(LAN). The existing version of our stack supports the
Beaglebone Black [21] embedded platform, with clock-
synchronization support for PTP [11] and NTP [12] over



Ethernet. The stack consists of kernel modules and sys-
tem services, and does not modify the Linux kernel.

3 Coordination in Cyber-Physical Systems
This section outlines the key concerns to be addressed
from the standpoint of enabling coordination in CPS.
1. Scalability: As illustrated in Figure 1, many emerg-

ing CPS applications will scale large geographical ar-
eas. Cisco predicts that the number of connected sens-
ing/actuation endpoints will exceed 50 billion by 2020
[31]. We believe that CPS frameworks which support co-
ordinated action among a large number of geo-distributed
components, will enable new classes of applications.
2. Fault Tolerance and Reliability: Most CPS ap-

plications are safety-critical [2], making fault tolerance
necessary. In the software services domain, fault tol-
erance is concerned with reducing down time, and pre-
venting information loss [32]. Hence, most services are
replicated across different fault-tolerance domains. Most
CPS also utilize replication techniques to ensure fault tol-
erance. However, CPS interact with the real world, where
the safety of humans and infrastructure is critical. There-
fore, CPS may also rely on analytical redundancy [33],
involving graceful degradation modes. When multiple
components fail, the system must be able to gracefully
degrade and stop without causing any harm [34].
3. Security: The presence of malicious nodes can

severely impact local behavior and global coordination,
which can have consequences in safety-critical applica-
tions. As compared to software services, which are hosted
in a secure data center, many CPS have physical nodes de-
ployed in public spaces. Hence, malicious nodes need to
be detected and isolated from the coordination subgroup,
without violating safety constraints.
4. Ease of Programmability: In the software services

domain, the availability of cloud APIs enables develop-
ers to easily deploy and elastically scale applications in
the cloud. Similarly, the emergence of frameworks like
Map-Reduce [35] and Spark [36] have enabled scalable
parallel computation over clusters in the cloud. In the
CPSdomain, enabling coordination across heterogeneous
platforms, ranging from sensor networks to the cloud, is
a challenge. Hence, there is a need for a framework,
which is easy to use, and has expressive power to support
coordinated CPS from local to planetary scales.

4 The Case for Shared Time and QoT
We now argue for designing coordinated CPS using a
shared notion of time with the associated knowledge of
QoT. In distributed software systems, a shared notion of
time enables increased performance and better coordi-
nation, along with decreasing the number of messages
which need to be exchanged [30]. However, there are in-
herent uncertainties associatedwith synchronizing clocks

over a network. Hence, in [30], Liskov reasons that sys-
tems should rely on clock synchronization for perfor-
mance but not correctness. This is true for most software
systems. For example, reducing timing uncertainty de-
creases the transaction commit wait in Spanner, leading
to better performance [29]. However, in CPS, the uncer-
tainty tolerances are dictated by the application and the
environment. If the required QoT cannot be met, then the
application should be aware of it, and gracefully degrade
to satisfy safety and reliability requirements.

Wehighlight the benefits of coordination using a shared
notion of time by presenting an emerging CPS applica-
tion utilizing an idealized solution called TimeNet. Sub-
sequently, we present the practical challenges in enabling
scalable coordination in CPS using shared time and QoT.

4.1 Connected Vehicles using TimeNet
Coordinating fleets of connected autonomous vehicles for
city-wide dynamic traffic management is an example of
a geo-distributed application which can benefit from us-
ing a shared notion of time. The proposed application
hierarchy is illustrated in Figure 3, and consists of au-
tonomous vehicles,Vehicle-to-Infrastructure (V2I) nodes
[40], cloudlets and the cloud.

In an ideal world, we can assume that all components
of this application are connected to a network which pro-
vides instantaneous access to an ideal source of time with
no associated uncertainty. For the sake of simplicity, let’s
call this hypothetical network TimeNet. Let’s assume that
TimeNet can be used to perfectly time-stamp all events and
messages with zero uncertainty. Hence, using TimeNet,
a unique total ordering on all events can be derived.

In the context of our application, the infrastructure
nodes can precisely measure the location of the vehicles,
alongwith the exact timestamp associatedwith a vehicle’s
presence at that location. This timestamped information
can be then forwarded to a nearby cloudlet, which receives
state information from multiple infrastructure nodes in a
small geographical area. Multiple such cloudlets can then
forward their respective state information to the cloud,
which sits atop the application hierarchy. In this hierar-
chy, the cloud is responsible for shaping traffic flow at
a macroscopic level. Based on the macroscopic policy,
the cloudlets make local decisions for their respective re-
gions. Lastly, infrastructure nodes decide microscopic
traffic policy and convey instructions to the autonomous
vehicles, which implement these instructions.

In an ideal world, accurate information can be inferred
from these timestamped events, which can be used to for-
mulate plans of action, such that vehicles coordinate their
actions using this ideal notion of time. Thus, vehicular
traffic is dynamically managed at city scale. In the worst
case, if timing constraints are violated or messages de-
layed, then by using the current time, components can



detect failures, and take corrective action [30].
Unfortunately, a perfect source of time does not ex-

ist, and practical systems introduce uncertainty in tim-
ing measurements. Hence, to determine the validity of
timestamps, the knowledge of its associated uncertainty
is essential. Based on this uncertainty information, coor-
dination policies can order events with different degrees
of confidence. If the uncertainty exceeds tolerable limits,
systems can fail-over or gracefully degrade. For exam-
ple, in the context of the dynamic traffic management
application, if the uncertainty exceeds tolerable limits,
the coordination policy can instruct all or some vehicles
to temporarily change their speeds, or come to a safe halt.
Exposing the notion of QoT to applications also al-

lows timing requirements to be explicitly specified. This
enables the system to optimize for application QoT re-
quirements, and manage resources efficiently. Hence, in
the context of CPS, synchronized clocks along with QoT
can deliver both performance and reliability.
The present-day GPS is a close approximation to

TimeNet, ideally providing synchronization in the order
of tens of nanoseconds. However, GPS is not accesi-
ble indoors and inaccurate in urban canyons [37]. This
limits its use in many applications [38]. Hence, a practi-
cal realization of TimeNet may involve multiple outdoor
GPS receivers equipped with chip-scale atomic clocks
[39]. These receivers can distribute accurate time to sub-
scribers both wirelessly and over the Internet [12]. To
support the notion of QoT, it is crucial that each node in
TimeNet quantify the uncertainty in its notion of time.
4.2 A QoT-based CPS-Cloud Architecture
We now address the various challenges involved in de-
signing a practical extension of our QoT Architecture, in
the context of using a hierarchy of cloudlets and the cloud
as an enabler of scalable CPS coordination.
1. Global Timeline Service: The timeline abstrac-

tion is key to forming different scalable coordination
subgroups on the same infrastructure. Additionally, a
timeline enables different coordinating components of an
application to specify their QoT requirements and sub-
scribe to a shared notion of time. These different com-
ponents may be running on nodes that are interconnected
by heterogeneous networking technology. For example,
in the dynamic traffic management application shown in
Figure 3, the vehicles and the infrastructure nodes may be
connected by a Dedicated Short-Range Communications
(DSRC) V2I network [40]. On the other hand, the infras-
tructure nodes, cloudlets and the cloud are connected by
the Internet (using 4G/5G, Wi-Fi or Ethernet). Hence,
there is a need for a global timeline service, which pro-
vides a common protocol to coordinate these components
interconnected by heterogeneous technologies.
2. Scalable Synchronization Service: In CPS, it

is common to find platforms ranging from ARM-based
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ment application
micro-controllers to server-grade x86 machines. These
platforms have different resource constraints and capa-
bilities. Hence, while most edge devices use wireless
networking technologies like Wi-Fi, BLE [41], UWB
[42] and Zigbee [43], gateways and cloudlets have both
wireless and wired links, and servers in the cloud mostly
rely on wired technologies like Ethernet. The plethora of
these networking technologies implies that multiple clock
synchronization protocols, such as NTP [12], PTP [11],
RBS [44] and FTSP [45], might be in use within the same
distributed application. Additionally, distributed applica-
tion components will have different QoT requirements.
For example, tight clock synchronization is required
among the sensing/actuation endpoints, while compu-
tational components (cloudlets and the cloud) have less
stringent QoT requirements. These factors make main-
taining a shared notion of time, as well as calculating and
transferring timing uncertainty information across these
multiple networking domains, challenging. Given the
heterogeneity in applications, platforms, networks and
protocols, there is a need for a service which orchestrates
the system to ensure that QoT guarantees are met.

3. Fault-Tolerance Support: The notion of QoT will
facilitate fault tolerance. Hence, it is crucial that each
coordinating component maintain its own notion of QoT,
based on the synchronization and system uncertainties.
Thus, during network or synchronization outages, each
component can calculate the delivered QoT, using pre-
viously computed worst-case uncertainty estimates [1].
When the calculated QoT exceeds the specified tolerance,
or timing constraints are violated, application compo-
nents can fail-over to a replica or gracefully degrade.

4. Pub/Sub Messaging: The publish/subscribe
paradigm has emerged as the method of choice for com-
municating among coordinating nodes [46], and is com-
monly used for coordination in many real-world applica-
tions [34][47]. Additionally, publish/subscribe technolo-
gies support a variety of communication media, and have
been shown to scale. Hence, in our architecture, we allow
all components bound to a timeline to publish their mes-
sages to all other nodes. Individual nodes can subscribe
to subsets of messages based on content or type.

5. Virtualization Support: Most clouds and cloudlets
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Figure 4: A QoT-based CPS-Cloud Architecture
provide virtualized units of computing, which may be
Virtual Machines (VMs) or containers [48]. Virtualiza-
tion adds additional timing uncertainty due to relatively
high jitter in clock-read and timer-interrupt latencies [14].
Thus, scheduling computations precisely on global time
in a virtualized environment is challenging. Addition-
ally, the possibility of VM/container migration raises the
question of storing synchronization state in the hyper-
viser or the guest [14]. Hence, the use of virtualization in
the cloud presents a challenge in terms of observing and
guaranteeing the QoT delivered to an application.
6. QoT-Aware Cloud Scheduling: The presence

of multiple virtualized units running applications with
different QoT requirements adds an additional layer of
complexity to the QoT-aware cloud scheduling prob-
lem. We envision our QoT scheduler working in con-
junction with existing multi-level scheduling frameworks
[49][50]. Hence, there is a need to provide probabilistic
QoT-based Service Level Agreements (SLAs). Addition-
ally, as indicated in the case of Spanner [29], modern data
centers may have access to a GPS receiver for precise tim-
ing. We believe that placing a VM or container on a host
in proximity to this receiver would enable a higher level of
QoT. Hence, the QoT requirements of applications would
dictate the host to which they are allocated.
7. Security: Given that our architecture involves coor-

dination between sets of nodes, we envision using public-
key based authentication [51]. Only nodes with appro-
priate public keys can join the timeline. Additionally,
messages can be encrypted using this key.
8. Coordination APIs: To enable distributed coordi-

nation at scale, it is essential to have a core set of APIs
that are independent of the platform and OS. At the same
time, the APIs should be extensible to support platform-
specific extensions. The APIs enable applications to (i)
bind/unbind from a timeline, (ii) specify/update their QoT
requirements, (iii) schedule computation, sensing and ac-
tuation based on shared time, (iv) timestamp events, and
(v) pub/sub messaging for coordination. All API calls
return the QoT actually delivered to the application, pro-
viding the ability to adapt to changes in QoT.
Figure 4 illustrates how the QoT Architecture can en-

able a host of coordinated CPS applications, running on
distributed heterogeneous networked infrastructure.

5 Related Work
Most of the existing work in the literature on cloud-
enabled CPS, focus on reducing latency, by bringing
resource-rich computing closer to the edge of the net-
work [7][10][27][52]. All these frameworks focus on
proper partitioning of functionality among different tiers
of nodes, ranging from the cloud to cloudlets, gateways
and edge devices. We believe that using a shared notion
of time along with the knowledge of QoT is complemen-
tary to these techniques. While low latency is crucial
to achieve real-time performance, using shared time pro-
vides scalability, while the knowledge of QoT provides
applications the ability to adapt, and be fault-tolerant.

The idea of using a shared notion of time in dis-
tributed systems is not new. In [30], Liskov analyzed
the performance benefits of using clock synchronization
in many distributed algorithms. In the embedded do-
main, PTIDES [53] provides a framework to model, de-
sign and deploy time-critical embedded applications, us-
ing a shared notion of time. However, these prior work
do not consider the utility of the knowledge of timing un-
certainty, and rely on best-effort clock synchronization.
While Google Spanner utilizes uncertainty information
for achieving global-scale consistency and performance
[29], the use of uncertainty as an enabler of performance,
scalability and fault tolerance has not been explored.

The use of cloudlets and the cloud entail the use of vir-
tualized computing units which introduce additional tim-
ing uncertainty. In [14], Broomhead et al. experimentally
characterized the timekeeping properties of the Xen para-
virtualization platform. To the best of our knowledge, no
similar study exists in the context of hardware-accelerated
virtualization and container-based frameworks. Addi-
tionally, scheduling virtualized units based on application
QoT requirements needs to be explored.

6 Conclusion
Deploying Cyber-Physical Systems at scale is of increas-
ing interest to researchers. In this position paper we
highlight the merits of designing scalable coordinated
CPS using a shared notion of time, along with the asso-
ciated knowledge of Quality of Time. We identify the
challenges involved in designing a practical QoT-based
CPS framework, and believe that by incorporating the
proposed design choices, our stack can support cloudlets
and the cloud to achieve geo-distributed CPS coordina-
tion at scale. Additionally, we believe that our architec-
ture would also be useful for distributed software systems
[29] which can reap scalability and better performance
using shared time.



Discussion

Our position paper argues for coordination in cloud-
enabled geo-distributed Cyber-Physical Systems using a
shared notion of time, along with the associated idea of
Quality of Time. Recent trends in networking hardware
and clock synchronization, coupled with the availability
of chip-scale atomic clocks and low-cost good-quality
oscillators, have enabled distributed nodes to precisely
synchronize their clocks. Hence, we posit that the use
of shared-time with the added notion of QoT, will enable
planetary-scale coordination, while providing additional
avenues for application-level fault tolerance. This ap-
proach is fundamentally different from traditional tech-
niques, which mostly rely on low-latency message pass-
ing to achieve coordination. We believe that this is of
significant interest to the research community.
We also illustrate the design choices needed to real-

ize a practical global shared-time based framework, to
support coordination in CPS, ranging from local to plan-
etary scales. This paper does not delve into the intricate
details of our proposed framework, and focuses on the
high-level requirements needed to achieve scalable co-
ordination. Future work includes overcoming multiple
challenges related to QoT-based cloud scheduling and
system orchestration. Additionally, another area of fu-
ture research is the possibility of our framework being
useful for enabling better performance and scalability in
software systems.
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