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Abstract

Smart-Manufacturing systems are increasingly being used to perform complex tasks on the factory floor. Most often, these systems
have hard-coded cases to achieve a specific set of actions -or to assure the safety of the operations. The hard-coding makes the
use complicated to re-deploy a system for different tasks. Therefore, it is necessary to have a flexible framework, which can
generate a plan based on an intuitive description with system constraints, while satisfying all safety conditions. In this work, we
propose Linear Temporal Logic (LTL)-based autonomy framework for smart-manufacturing systems. Specifically, we describe
a general technique for formulating problems using LTL specifications. The use of LTL enables us to specify a manufacturing
scenario (e.g. assembly), along with system constraints, as well as assured autonomy. Based on the given LTL formulation, a
safe solution satisfying all constraints can be generated using a satisfiability solver. To eliminate the exhaustive and exponential
nature of the solver, we reduced the exploration space with a divide and conquer approach in a receding horizon, which brings
dramatic improvements in time and enables our solution for real-world applications. Our experimental evaluations indicated that
our solution scales linearly as the problem complexity increases. We showcased the feasibility of our approach by integrating TL-
based autonomy with the simulations of Gantry robot in Siemens NX Mechatronics Concept Designer and TIA Portal (PLCSIM
Advanced) for Siemens S7-1500 TCPU connected to Sinamics drives.
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1. Introduction

Manufacturing is an activity centered around the idea of converting raw-materials or partially-finished assemblies,
into value-added products. To make profits, it is essential that the manufacturing process be flexible and cost-effective.
A number of manufacturing inputs, such as the cost of raw materials and labor, are subject to internal and external
perturbations which are influenced by innovation, public policy, and the state of the environment as well as the
economy. To adapt those changes and reduce the total cost of manufacturing, researchers in industry and academia
push the limits of the technologies in several topics including automation and robotics. Most of these technologies
involve bridging concepts from multiple domains to build frameworks such as Industry 4.0 which incorporate several
important factors such as autonomy, digital-twin and simulation [1], networking and connectivity [2], cyber security
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[3], cloud and edge computation [4], data analytics, and big data [5]. The main aim of using these technologies is to
build smart and versatile manufacturing systems, which can perform a variety of different tasks.

Synthesizing controllers for assured safety of autonomous cyber-physical systems is a necessity for systems op-
erating on the factory floor because (i) humans and robots may perform collaborative manufacturing tasks, and (ii)
violating safety requirements may cause damage to manufacturing equipment, raw materials or the environment.
In addition to safety, the methodology for enabling autonomy should connect the previously highlighted aspects of
Industry 4.0.

Irrespective of the target industry or application, autonomous cyber-physical systems utilize intelligent algorithms
for performing specific tasks without human intervention. Intelligent algorithms often incorporate meta-operating
systems (e.g., ROS [6]) with both high and low-level controllers, which consist of closed-loop mechanisms for main-
taining continuous stability, with respect to given decisions or planning results under constraints.

Several tests are required to conform and ensure the behavior of the system for the expected outputs. In most
complex systems, it would be an exhaustive and almost impossible to cover all of the possibilities. Therefore, there
are methods in software engineering such as model checking, to determine if the system model conforms to a given
set of desirable properties. Model checking tools verify the functionality of a program structure in a concurrent event-
driven fashion -similar to the operation flow of the factory floor. Nonetheless, it is notoriously difficult to validate all
the reactions to non-deterministic interactions. To cope with these difficulties, we propose a methodology -commonly
known as temporal logic (TL) specifications- which can be easily combined with the hardware- or software-in-the-
loop systems for cyber-physical systems. Instead of programming the individual corner-cases in an in-depth finite-
state specifics, we define the temporal-logic-based expressions with an intuitive input language specified in NuSMV
solver [7]. Our approach eases the implementation by using a mathematical formalism of logical operations with
temporal specifications which enable smart manufacturing on factory floor.

From a software verification perspective, LTL is also advantageous to ensure safe operation of safety-critical sys-
tems. Other than software verification,one can give several examples of the applications from academia with different
intentions such as prognostics and health management [8], model-checking based verification approach for advanced
industrial automation solution [9], formal verification and code reuse for PLC-based automation systems [10], formal
specification language for control logic [11], and symbolic planning tool to control robot motion [12]. Most of these
research efforts in academia and industry target a specific and tailored need to use TL in smart cyber-physical systems
without having the generalization in a framework. Differently, the contributions of this paper are as follows:

1. Eliminating large and hand-coded formulations by using Linear-Temporal-Logic-based problem representations.

2. Reduction in the exploration space and ensuring the scalability of the approach within an acceptable runtime
requirements.

3. Connectivity to a generic run-time framework for autonomous factory operations.

4. Integrating realizable, tractable, and satisfiable safe meta planner to an autonomous run-time framework.

The rest of the paper is organized as follows. Section 2 provides insights into how Linear Temporal Logic (LTL)
can be used for autonomy in smart-manufacturing systems. Section 3 showcases an example use-case of the proposed
approach, in an autonomous industrial-automation laboratory setup, which contains an intelligent machine structure -
Gantry Robot- for utilizing our proposed formalisms. Section 4 presents experimental results, and Section 5 concludes
the paper.

2. Linear Temporal Logic (LTL)-based Autonomy for Manufacturing

Linear Temporal Logic [13], also known as LTL, is a mathematical description language, used to specify the
behavior of a system over discrete time steps. Using LTL, a formula describing a set of paths consisting of different
state transitions can be specified. For example, LTL can be used to specify a condition which will eventually be true,
or a condition which holds until a specified state is reached. LTL was initially designed as a framework for specifying
the properties of computer programs. Based on the specified set of properties, a program can be formally verified.
In recent years, LTL has been increasingly used to specify planning problems [14]. The problem specification is
generally the final state or goal to be achieved, while the constraints can include both the physical constraints, the



H.S. Bank / Procedia Manufacturing 00 (2018) 000-000 3

model describing the system, as well as safety requirements. A satisfiability solver can then be used to generate
a feasible solution path which can solve the specified problem, while satisfying the constraints. Thus, the use of
LTL enables a solution which satisfies all safety constraints, thus ensuring that a generated solution can provide safe
autonomy.

We now briefly describe the semantics of LTL, in the context of specifying a manufacturing task. Every LTL
formula consists of a set of atomic propositions (AP) and several boolean and temporal operators. The following
grammar is used to form LTL formulas [15]: ¢ :=true |[a| ¢ A @2 | =@ | O ¢ | ¢1 U @2, where a € AP and O (next,
i.e, ¢ is true in the next time step), U (until, i.e, some property holds until ¢ is true). Other useful temporal operators
include, I (always, i.e, ¢ is always true), 4 (eventually, i.e, ¢ is eventually true) and = (implication, i.e, ¢; = ¢;
implies if property ¢; is true, then property ¢; holds as well). A more detailed description of LTL can be found in
[15].

Atomic Propositions (AP) are generally used to describe the properties of interest about a system. In particular,
using multiple such propositions we can capture complex behavioral rules, system constraints and the planning ob-
jective. Consider a typical automated manufacturing scenario involving the assembly or the additive construction of
a certain object. This use-case generally involves the motion of one or more robotic tools, to successfully assem-
ble/construct the object. To do so, a meta-planner as well as a tool-path needs to be generated for each tool, such
that:

1. The time and energy required to construct/assemble the object is minimized.
2. The physical constraints of the tool and the workplace are not violated.
3. No safety constraints are violated.

Some of the common physical constraints are including and not limited to reachability constraints, i.e., the part of
the workspace accessible by the tool, and collision constraints, i.e., no two objects (tools, workpiece and obstacles)
can be in the same place at the same time, to name a few. One can easily increase the number of rules by converting
standardized and formal definitions (e.g., [16], [17], [18], etc.) into TL formalisms which we present with this paper.

We now describe how LTL can be used for autonomy in the manufacturing context. We use LTL as a language
to generate a high-level specification for a planning problem. Based on this specification and a finite-state machine
model of the system, we can generate a feasible meta-level sequence of tasks, which can be fed to low-level motion
controllers for generating trajectories for the various system actuators.

Without loss of generality, let us consider an assembly task to be carried out by a single tool, 7, whose state can
be described by an M-dimensional array 7;, i = 1,2,3,..., M. Each 1; can be used to describe different properties,
including those related to the the orientation or state of the tool. For example, if the tool is a gripper, its state variables
7; can include (i) whether the gripper is open or close, (ii) encode its orientation based on its degrees of freedom, or
(iii) specify the content which the gripper is holding.

Let us assume that we have a 3-dimensional workspace, which can be divided into N unit-size cubes 7;, i =
1,2,3,..., N, where the unit size depends on the resolution of the tool’s motion or the granularity of the task, and
N depends on the size of the workspace and the chosen unit size. At any discrete time step, the state of each cube
depends on the object occupying the space described by the cube. For example, the state of the cube can be empty
€, or occupied by a tool 7, an obstacle w, or a sub-assembly or part «;, j = 1,2,3,..., K where K is the number of
parts. We can assume that the state space for each m; is I' = {e, 7, @, w}, i.e, ;; € I, Vi = 1,2,3, ..., N. If we consider
an assembly problem, the final objective can be described using the different xr;s, where to successfully assemble an
object, each sub-assembly or part «/; should go to the its corresponding desired location ;. Let this final desired state
be Il = A;;m = a;. Similarly, let the constraints of the system be X, which can be specified using temporal and
logical operators.

Given the different planning objective IT and constraints X, the LTL specification A of the manufacturing planning
problem can be given by:

A=XUIl 6]

This formulation implies that we need to find a solution path which can reach the state I1, such that the path satisfies
all the constraints encoded by X until state I1 is reached. Among all such feasible paths, we are often interested in the
path which can reach the desired state I1 in the shortest number of steps.
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Fig. 1. Application architecture for autonomous factory setup and intelligent machine tool (Gantry Robot in black rectangle)

However, to find a feasible plan representing the system state transitions, we also need to represent the manufac-
turing system as a finite-state machine. In the context of the manufacturing problem, the system state transitions can
be described using the state of the tool 7 and the state of the workspace I1. Using these state variables we can define
deterministic transitions or let a solver randomly pick a state. For example, in this work, we are primarily interested in
finding a feasible plan for a particular tool. Therefore, the transition of the tool’s state (like position and orientation),
needs to be chosen by the solver. Therefore the transition definitions for the tool in the state-machine representation is
not deterministic. On the other hand, the next state of the workspace depends on the next state of the tool. For example
if a gripper tool moves a sub-assembly from one location to another, there needs to be a corresponding change in the
state I1, to reflect this movement. In Section 3, by means of an example we will describe how the finite-state machine
representation can be formulated.

Given an LTL specification along with the finite-state machine representation of the manufacturing system, we
can find a feasible plan which violates for the given specifications, using a Bounded Model Checker (BMC) [7].
Therefore, for our manufacturing problem, we need to provide a negation of the LTL specification derived in Equation
1, i.e., =A, to find a feasible solution using a BMC. Most available BMCs use a Boolean Satisfiability (SAT) solver
to find the shortest path which violates the given LTL specifications. Therefore, if the LTL consists of multiple states,
the solution space can explode, which can result in the solver taking a long duration of time to generate a solution. In
this regard, BMC-based solver becomes unrealistic for generating solutions in real-time. In Section 3, we will explore
how the solving time can be reduced by breaking up the problem into smaller pieces, using a divide and conquer in a
receding horizon.

3. Industrial Smart Manufacturing Test Bed

In this section, we describe the industrial test-bed used to prototype our LTL-based task-planning methodology for
smart manufacturing systems. Our system consists of gantry station, different type of industrial robot arms as well as
smart conveyor system -as shown in Fig.1. We used gantry robot as an inspection and final assembly station to make
sure the conformity between the target and current assembly. The robot arms performs intermediate operations before
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final assembly at the gantry robot. Smart conveyor system moves the products from one station to another. Our smart
manufacturing test-bed represents a mission-driven production where the product carries the results in between object
engines. For example, the product object can convey the perception from the sensors (e.g., cameras) to corresponding
algorithms (e.g., station scheduler and planner) so that the smart conveyor is able to carry the product accordingly.
Before going into the details of the design for our gantry robot, we describe a prototype use-case, for emulating a
manufacturing scenario without the overall planning and scheduling between the stations.

3.1. Autonomy Prototype Use-Case

Our use-case imitates the assembly of multiple components by means of a puzzle, which we provide to our Gantry

Robot to solve. The puzzle consists of a A X B 2-dimensional grid, with each space in the grid being able to ac-
commodate a single colored cube. Initially all but one of the spaces in the grid are filled with cubes of C different
colors, where C < (A X B) — 1. Using a Human-Machine Interfaces (e.g. HMI touchpad, augmented reality, etc.),
a user can specify a final configuration of the cubes presenting on the grid. The objective of the gantry system is to
autonomously move the cubes to their user-specified positions, using the single empty space on the grid as a buffer.
To do so, we use the LTL-based meta task-planning methodology described in Section 2, to formulate the problem.
In order to use the proposed methodology to generate a feasible plan and tool-path, we developed a software package
which utilizes the Bounded Model Checker (BMC) of NuSMYV solver [7]. Our package takes in the initial state of
the system (which may be obtained from a camera or manual input), along with the desired user-specified state (from
the Human-Machine Interface e.g., HMI TP700), and generates a problem specification as well as state-machine
representation of the system. Our solution feeds the generated problem representation to the NuSMV BMC, which
generates a safe and feasible meta-level plan. The motion planner module in our solution, can use this meta-plan for
the execution of the plan. All of these mentioned algorithmic components are imbued in the controller (Siemens S7
TCPU) of the Gantry system with an architectural relationship is shown at the top of Fig 1. In our gantry system, the
provided puzzle consists of a 6 x4 grid (A = 6 and B = 4), and consists of 23 cubes of 5 colors: red, green, blue, white
and yellow (C = 5). One space in the grid is empty, and serves as a buffer to move the cubes around. To illustrate
how our proposed methodology works, we provide a toy-example of a 2 X 2 grid, consisting of 3 cubes colored red
(r), blue (b) and green(r), and one empty buffer space. Listing 1 provides the state-machine representation of the
2 x 2 puzzle, and the LTL specification of the problem, using a NuSMV-compatible syntax [7]. The representation
provides a state-machine description of the problem, where the position of the gripper tool (tool_pos) can be in any
one positions (0,1,2 or 3) in the 2D grid. This tool position needs to be generated by the solver. Based on the position
chosen for the gripper, the rest of the system state-transitions can be defined. For instance, the representation assumes
that when the gripper tool is at a position in the grid, and if the gripper or the position is empty (no cube present),
then the gripper and the space interchange the cube. For example, if the gripper is empty, and in a position with a
cube present, the gripper picks up the cube, and the space becomes empty. Similarly, if the gripper has a cube and is
in an empty position, the gripper releases the cube into the empty space. Thus, using the above assumptions, the state
of any position in the grid (posO,posl,pos2,pos3) and the state of the gripper tool (tool_state) can be defined,
using a switch-case syntax, which depends on the chosen tool position (tool_pos).
The representation in Listing 1 also includes the LTL specifications of the problem, formulated using the methodology
in Section 2. The LTL specification states a system constraint X, which specifies that the tool (gripper) should not
place a cube in a space which is already occupied by another cube. For each position in the grid, this constraint is
stated in the form, if the tool is at a position, and the state of the gripper tool is not empty (the gripper has a cube),
then this should imply that the position is empty (does not have a cube). The stated LTL specification also has the
final desired state I1, which is a logical AND of the final user-desired state of each of the positions in the 2 x 2 grid.
Therefore, the LTL specification is A = X U I1. Thus, the input to the BMC is —A, as the BMC is generally designed
to find a path which does not meet the given specification. Figure 4 illustrates the result of an feasible solution path,
generated using our solver package, for moving between a given starting state and user-specified end state.

Listing 1. NuSMV-based Problem Representation

MODULE main
# Define the State Variables and their State Space
VAR
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tool_pos {0,1,2,3}; # Tool Position over the 2D grid

tool_state: {r,g,b,0}; # State of the Tool (Object held by Gripper)

pos0 : {r,g,b,0}; # State of Position 0 on the 2X2 Grid

posl : {r,g,b,0}; # State of Position 1 on the 2X2 Grid

pos2 : {r,g,b,0}; # State of Position 2 on the 2X2 Grid

pos3 {r,g,b,0}; # State of Position 3 on the 2X2 Grid

empty {0,1,2,3}; # Variable keeping track of the empty buffer space

Variables

%)
~
Q
~
[N

# Initializing the
ASSIGN

init (tool_pos) :=
init(tool_state):=
init (pos0) 1=
init (posl) 1=
init (pos2) 1=
init (pos3) 1=
init (empty)

Tool initially over Position 0
Gripper Tool initially empty
Red cube in Position 0

Green cube in Position 1

Blue cube in Position 2
Position 3 Empty

Empty space is Position 3

W o oTm| = oo
R I R S

# System State—-Machine Representation

# Tool Position (Solver choses next state)
next(tool_pos) = {0,1,2,3};

# Tool State (depends on chosen tool_pos —> Gripper grabs object in position)
next(tool_state) := case

tool_pos=0 : posO;
tool_pos=1 : posl;
tool_pos=2 : pos2;
tool_pos=3 : pos3;
TRUE : arm_state ;

esac ;

# Next empty state

next (empty) := case
tool_pos=0 & next(pos0)=0 : 0;
tool_pos=1 & next(posl)=0 N
tool_pos=2 & next(pos2)=0 2,
tool_pos=3 & next(pos3)=0 ;3
TRUE : empty;

esac;

# Next State of Position 0

next (pos0) := case
tool_pos=0 : tool_state;
TRUE : posO;
esac ;

# Next State of Position 1

next (posl) := case
tool_pos=1 : tool_state;
TRUE : posl;
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esac ;

# Next State of Position 2

next (pos2) := case
tool_pos=2 : tool_state;
TRUE : pos2;
esac;

# Next State of Position 3

next (pos3) := case
tool_pos=3 : tool_state;
TRUE : pos3;

esac ;

# LTL-based problem specification
LTLSPEC !((((tool_pos=0 & !(tool_state=0)) —> pos0=0)
& ((tool_pos=1 & !(tool_state=0)) —> posl=0)
& ((tool_pos=2 & !(tool_state=0)) —> pos2=0)
& ((tool_pos=3 & !(tool_state=0)) —> pos3=0)
U (pos0=0 & posl=r & pos2=g & pos3=b & arm_state =0))

3.2. The Design Methodology of Industrial Gantry System

The intelligent machine structure consists of a high-level planner to orchestrate the operations in low-level con-
troller. The high-level planner renders autonomy to the system with an integrated motion and task planner. The
algorithms of low-level controller lie in the realization and execution of motion profiles as per the instructions re-
ceived from the high-level planner. The low-level controller is based on a technological controller (S7-1500T) which
controls the modular servo drive system (SINAMICS S120). Each servo of the drive system is coupled to a linear
system for required linear motion of Gantry Robot. We illustrated the relationship between the hardware and software
components in Fig 3. Three servo-controller and linear motion systems are coupled to each other which enables the
end-effector’s motion in 3D- Cartesian Space. The Gantry Robots essentially contains three axes where each axis
moves in the directions of x, y and z vectors (3D-Cartesian space). This implies that each point the end-effector of
Gantry system traverses to computed X, y, and z coordinates. Additional two axes with rotational and servo-controlled
gimbal mechanism allows for changing the orientation of the end-effector as shown in Fig 3. Moreover, the proposed
system structure permits the control of 6-dof which the end-effector of the gantry system would perform in complex
curvilinear paths or spline trajectories without an issue. In the current design, each point in space can be defined by
X, V, Z, @ and B, where X, y, and z are linear distances while @ and 8 are the orientations. The low-level controller
executes the synchronized linear and non-linear motion of multiple axes (servos) which Gantry Robot has 6-degrees

L 1 e EEE EEE O EEE] NN  EEE
EEEn ENSN EEEE EENEN EENSN EEEE
EEEN HEEEN EEEN  EEEE o | :
T T Ind e T T Tl T T lmd T T T i T T T lad T 11
EEEE EEEE EEEE EEEE EEEN EEEE
EEEE EEEE EEEE EEEE NEEE EEEE

Sub-Problem1  Sub-|

o

roblem 2 Sub-Problem3 Sub-Problem4 Sub-Problem5 Sub-Problem 6 Final State

r-

[l Green Cube Blue cube Il RedCube []  Empty space L} Solved Positions L' Sub-problem

Fig. 2. Example illustrating the divide and conquer methodology for reducing solving time
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Fig. 3. The simulation and virtual commissioning architecture of intelligent machine tool (Gantry System)

of freedom. Such functionality utilizes e-CAM Technology in TIA Portal V 14.0 SP1, a proprietary SIEMENS de-
velopment platform for the controllers such as S7 series. The controllers are designed with the capability to handle
complex motion profile for synchronized multi-axes motion in real-time. The developed motion control library has
a multi-segmented interpolation with a cyclic buffer which bolsters PLC controller for executing complex motion
profiles in the run-time from high-level planners. We tested the motion control library up to thousand points -at once-
in TIA Portal PLCSIM Advanced V2.0 which is also a proprietary SIEMENS software package. Due to the cyclic
buffer the program can increase the total number of points without having any internal memory problems. PLCSIM
Advanced emulates the technological functionality of a Siemens controller (e.g., S7-1500T series)[22] for striving
virtual commissioning of cyber-physical system. Thus, PLCSIM Advanced and TIA Portal also assist the control
engineer to tune and evaluate the actions (e.g., position, velocity profiles, acceleration and jerk limits, etc.) for the
corresponding axis of cyber-physical systems. At the end, we generated a digital twin of the system and simulated
the behaviors in Siemens NX Mechatronics Concept Designer (MCD). MCD simulates the systems under the given
physics-based conditions with the control signals of real -or simulated- hardware.

KEPServerEX facilitates the connectivity between PLCSIM Advanced and NX due to the difference of the OPC
protocols. TIA portal and PLCSIM Advanced are utilizing OPC UA whereas Siemens NX is OPC DA. KEPServerEX
bridges between PLCSIM Advanced and NX and allows to share information while avoiding the discrepancies of
OPC protocols. TIA Portal computes the necessary control actions. PLCSIM Advanced emulates the reaction of
the TIA Portal’s computations and maps computed parameters to Process Output Image of the controller. We setup
KEPServerEX to use this mapping and pass the information to NX MCD which utilizes the incoming data and show-
case the motion of Gantry Robot under physical constraints such as inertia, friction, and damping.

4. Results

For the described 2X2 toy example, our solver generated the safe and feasible solution in less than a second. As the
grid size grows, one can observe that the solution time increases exponentially due to the size of the exploration space
for the solver -the Boolean Satisfiability. Therefore, we reduced solving time by utilizing a receding-horizon-based
divide and conquer approach, and divide the A X B grid into sub-problems, where the aim is to move P cubes into
their correct position, where 1 < P < B. For example, consider the 6 x 4 grid, with 23 cubes and one empty buffer
space. If we choose P = 4, we can divide this problem into 6 sub problems. In the first sub problem, the aim is to
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Fig. 4. Example illustrating an feasible solution generated using our NuSMV-based solver package for a simple 2X2 problem. Each block in the
grid highlights the color of the cube in the block, and its position. The gripper illustration highlights the cube in the gripper.

get the positions 0 to 3 mapped to their correct cubes. Now, once this sub-problem is solved, positions O to 3 are
solved, while positions 4 to 23 are unsolved. So in the next iteration, we solve to get the positions 4 to 7 solved.
In doing so we consider only the positions between 4 and 23, and leave the cubes in positions 0 to 3 untouched (as
they are already in place). Similarly, each sub-problem tries to move P cubes into place without touching the cubes
which have already been solved. However, to ensure that the solver does not get stuck, we also need to ensure that
each sub-problem has an empty space (buffer) to enable cubes to be moved into their current position. Therefore, TL
formulation in NUSM V-compatible description ensures that the empty space is always a part of the sub-problem being
solved. Figure 2, shows an example 6X4 problem, which is solved using our proposed divide and conquer technique.
When P is sufficiently small, we can easily show that our technique, can enable the problem to be solved in linear
time, i.e, if P = B, then the solution time is O(A). This is because, we can show that to bring P blocks into place, we
need at most 2P steps, i.e., assuming all P blocks are placed incorrectly, we need to move each incorrect cube to the
buffer, and switch in the correct cube. Thus, for a given sub-problem of size P, the solving time can be upper bounded
by a constant time term.

We tested number of cubes with a certain colors (e.g., y, g, b, r, an empty) in the proposed framework as well
as standard NuSMV solver for benchmarking. We compared the speed and number of solution speed and number
of solution steps on a S7-1518 TCPU. The solution reflects the scalability of our proposed framework in real-time
system.

Table 1. Comparison between standard NuSMV and proposed framework
Solution Time [sec]
#of cubes | Standard NuSMV | Proposed Framework

4 04 0.1
8 30 0.2
16 100 0.4
24 480 0.8

100 3600 3.1
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5. Conclusion and Further Work

Emerging technologies (e.g. Industry 4.0) will shift the paradigm in Advanced Manufacturing, where manufactur-
ers try to adapt these technologies on factory floor and enabling Smart Manufacturing Systems. These adaptation will
bring new safety issues which would be hard to encode in runtime intelligence of cyber-physical system. Therefore,
we introduced TL-based autonomy for smart manufacturing systems to have an intuitive and easy to use framework
for hybrid -continuous and discrete- systems.

We showcased an industry-inspired implementation via simulation as well as real Gantry Robot. The Gantry
Robot and its skill (assembly) represents an abstraction which can be changed into different planning aspects for the
manufacturing process flow. At the end of the day, our method will assist to the system integrators or plant workers
for enabling safe autonomy of cyber-physical systems. We see the proposed framework as a generic tool to employ
the increasing need in different part of the factories.

Robust and interoperable methods with standardized interface protocols are imperative to have autonomous and
smart manufacturing for having a broader impact in different industries. The application of proposed TL-based auton-
omy framework under a standardized interface protocol (e.g., MTConnect) would bolster a wider use of our framework
for different machine-tools (e.g., Mazak, DMC, Mori Seiki, etc.) as well as controllers. Lastly, controller synthesis for
hybrid systems that satisfy temporal specifications expressing various system properties under uncertainties is more
realistic for manufacturing operations. Instead of utilizing learning based solutions to cope with the uncertainties,
probability infused TL would be an alternative solution. Therefore, we plan to add probabilistic operators in our Tem-
poral Logic (PrTL) framework which will incorporate stochastic mathematical specifications to enforce safety under
uncertainties. Lastly, the proposed method facilitates a safe and feasible solution rather than optimal, we leave the
optimal form of the LTL solution for our future work.
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