
QuartzV: Bringing Quality of Time to
Virtual Machines

Sandeep D’souza and Ragunathan (Raj) Rajkumar
Carnegie Mellon University

sandeepd@andrew.cmu.edu, rajkumar@andrew.cmu.edu

Abstract—Cyber-physical systems are increasingly intercon-
nected and distributed. Examples range from factory-scale in-
dustrial robotics to regional-scale smart grids. Therefore, to
enable dynamic coordination at scale among geo-distributed
physical endpoints, the intelligence behind these systems will
often be hosted in the cloud. However, most CPS applications
are inherently safety-critical, and require low-latency responses.
Hence, a hierarchy of edge cloudlets and the cloud can be used
to offload computationally and data-intensive workloads. While
low latency is key, a shared sense of time with the added notion
of Quality of Time (QoT) is useful for fault detection, and enables
fault-tolerant coordinated action in distributed CPS [1][2]. Given
that most public clouds and cloudlets provide multi-tenancy using
virtualized units of computing, we aim to introduce the notion
of QoT to virtual machines. The use of virtual machines entails
the use of a hypervisor, which adds additional timing uncertainty
due to relatively higher jitter in clock-read and timer-interrupt
latencies. Hence, the use of virtualization presents a challenge
in terms of observing and guaranteeing the QoT delivered to an
application. To meet these challenges, we present the QuartzV
extension to the QoT Stack for Linux [1], to make virtual
machines QoT-aware. We utilize the open-source QEMU-KVM
[3] hypervisor, and illustrate the para-virtual design choices that
are key for delivering near-native levels of timing performance
in virtual machines. We also demonstrate the utility of QuartzV
by using it in the development of an industrial-automation
application. Experimental evaluations also show the efficacy of
QuartzV with respect to the native and fully-virtualized cases.

I. INTRODUCTION

Emerging Cyber-Physical Systems (CPS) involve the con-
trol and manipulation of the environment using multiple
distributed entities. These systems range from factory-scale
industrial robotics [4] and city-scale connected vehicles [5]
to regional/national-scale power grids [6]. To operate effi-
ciently, all of these systems require coordinated actuation
(or action) among numerous nodes spread out over possibly
large geographical regions. The nature of this coordination
is usually dependent on the analysis of sensed data by an
intelligent computational entity, which may utilize techniques
ranging from signal processing to machine learning. The data-
intensive nature of CPS makes the cloud well-suited to host
this computational intelligence [2]. Alternatively, a hierarchy
of edge cloudlets [7] and the cloud may be utilized to meet
the low-latency requirements of CPS.

Time plays a key role in enabling coordination among
multiple entities [8]. This coordination occurs at different
timescales ranging from human coordination at the order
of seconds, to the sub-nanosecond level coordination among
Global Positioning System (GPS) satellites. A non-exhaustive
list of such coordinated systems includes sensor networks [9],
swarm robotics [10], tele-surgery [11], distributed databases

[12], and large-scale scientific experiments [13]. Therefore,
maintaining a shared notion of time is critical to the perfor-
mance and reliable operation of many distributed systems.

Clock-synchronization technologies such as GPS, Network
Time Protocol (NTP) [14], Precision Time Protocol (PTP)
[15], and hardware timestamping [15] have made it possible to
provide distributed systems with a reliable and accurate shared
notion of time. However, other technology trends have made
it harder for applications to benefit from these advances. For
example, asymmetric networking delays [14] and abstractions
like virtual machines introduce greater timing uncertainty [16].
This timing uncertainty can affect the quality and reliability
of coordination [2]. The level of uncertainty acceptable to an
application often depends on the time granularity at which
coordination occurs, as well as the coordination policy [2].

Fault-tolerant time-based coordination can be enabled by
using the notion of Quality of Time (QoT) [1], which repre-
sents the end-to-end uncertainty in the notion of time delivered
to an application by the system. Thus, QoT represents the
uncertainty bounds corresponding to a timestamp, with respect
to a clock reference. From an application perspective, if these
uncertainty bounds exceed an acceptable limit, the application
can enter a graceful-degradation mode, and thus be fault-
tolerant. Based on the notion of QoT, [1] also introduced
a reference QoT Architecture along with its corresponding
implementation for Linux, called the QoT Stack for Linux.

To enable scalable time-based cyber-physical coordination,
it is essential that we engineer a QoT-aware cloud/edge-
cloudlet infrastructure [2]. However, to maintain application
isolation, most public clouds and cloudlets provide multi-
tenancy using virtualized units of computing. These maybe
Virtual Machines (VMs) [17] or application containers [18].
Additionally, the use of virtualization for consolidation of
multiple real-time systems on a single platform is also of
increasing interest [19]. Motivated by these needs, this work
focuses on bringing the notion of QoT to the dominant
virtualization technology, namely virtual machines. We design
and implement the QuartzV extension to the QoT Stack for
Linux for introducing the notion of QoT to Linux VMs running
atop the open-source QEMU-KVM [3] hypervisor.

The contributions of this paper are as follows:
1) Elucidating the challenges and subsequent architectural

choices in bringing QoT to Virtual Machines.
2) Introducing the QuartzV extensions for Linux VMs

which support para-virtual clocks.
3) Porting the QoT Stack for Linux to VMs and hypervisors

which do not support para-virtual clocks.

4) Evaluating and comparing the performance and scala-
bility of the para-virtual QuartzV approach against the
native and fully-virtualized scenarios.

The rest of the paper is organized as follows. Section II pro-
vides a background of virtualization technologies, and time-
based coordination using QoT. Section III provides insight
into developing time-based coordinated applications using
QuartzV. Section IV introduces the QuartzV extension to
the QoT Stack for Linux. Section V provides experimental
evaluations, and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

We now introduce the background relevant to this work.

A. Virtualization

Virtualization is often used to share physical hardware
resources among multiple users, while providing the illusion
that every user has access to his/her own machine [20]. To
support this illusion, it is important that, (i) virtualized units
are well-isolated from other users [20], and (ii) the overhead of
virtualization is low [20]. These objectives are often conflict-
ing, and virtualization technologies generally trade-off one of
the objectives in favor of the other. For example, hypervisor-
based virtual machines [3][21] offer strong isolation by trading
off some performance due to the overhead of the hypervisor.
On the other hand, operating-system level virtualization [18]
(also known as containerization) trades off some level of
isolation for performance by eliminating the hypervisor.

In this paper, we focus on hypervisor-based virtual ma-
chines (VMs). Modern hypervisors generally take advantage
of hardware-accelerated virtualization, based on hardware
extensions like Intel VT-x [22] and AMD-V [23]. These tech-
nologies enable VMs to execute unprivileged CPU instructions
natively, while privileged instructions are serviced using the
trap and emulate mechanism [22]. On the other hand, para-
virtualization [20] enables low-latency access to peripherals
and I/O devices, such as network interfaces, disks and clocks,
also delivering near-native performance. This access is made
possible by para-virtual drivers [20] which can directly per-
form protected access to the hardware through the hypervisor.
For systems which do not support hardware acceleration or
VMs which lack para-virtual drivers, all CPU instructions or
peripheral-device access must be emulated in the hypervisor.
This is also referred to as full virtualization [20]. In prac-
tice, modern hypervisors generally utilize a mixture of para-
virtualization and hardware-accelerated virtualization [3][21]
to provide near-native levels of performance.

B. Time and Virtualization

The use of hypervisor-based VMs introduces an additional
abstraction layer between applications and the hardware. This
translates to additional timing uncertainty, due to higher jitter
in clock-read and interrupt-servicing latencies [16]. Therefore,
in [16], the authors experimentally characterize the timekeep-
ing properties of the Xen hypervisor [20]. Their work high-
lights the weaknesses of the existing timing solution in Xen,

12th May 2017

VM 1
(QEMU Process)

Linux Kernel
KVM

Kernel
Module

QEMU (hypervisor)

VM N
(QEMU Process)…

Kernel

Userspace

Para-Virtual
Hardware

Access

Emulated
Hardware

Access

Application Application

Hypervisor

VMs

Fig. 1. The QEMU-KVM Hypervisor. VM 1 supports para-virtual peripheral
access, while VM N utilizes peripheral emulation (full virtualization)

which uses independent NTP [14] synchronization sessions
for each guest VM. They refer to this as the independent
clock paradigm, where each VM independently performs clock
synchronization. The authors note that this practice is wasteful
of system resources, and degrades synchronization accuracy.
Additionally, the authors also find the practice of keeping
clock-synchronization state in the VM detrimental for live
migration. Hence, the authors propose a dependent clock solu-
tion based on the RADclock [24] feed-forward synchronization
algorithm. Each VM has a dependent clock, which is sourced
from the hardware clock on the host machine. Hence, each
VM has access to the para-virtualized hardware clock exposed
in the host OS. This clock is disciplined in the host OS,
and thus only one synchronization service is required per
host machine. Apart from being resource-efficient, as VMs
now do not contain synchronization state, the dependent-clock
paradigm also aids VM live migration. Hence, if a VM is
migrated, it does not need to re-synchronize its clock. Rather,
it can derive the time from the hypervisor at the new host.

The authors in [16] conclude that the para-virtualized de-
pendent clock is useful for VMs. However, the authors do not
consider the utility of exposing timing uncertainty information.
Additionally, the recent evolution of hypervisors and the
advent of hardware-accelerated virtualization offers a fresh
opportunity to re-visit the problem of time and virtualization.

C. Kernel-Based Virtual Machine (KVM)

We focus on one commodity open-source hypervisor,
namely Kernel-based Virtual Machine [3], also referred to as
QEMU-KVM. However, the core concepts of this work are
applicable to other commercial and open-source hypervisors.
Figure 1 shows the organization of the QEMU-KVM hyper-
visor, and illustrates how virtual machines interact with its
components. QEMU-KVM consists of two core components:

1. QEMU Emulator functions as a hypervisor, and each VM
runs as a QEMU process. QEMU can be used for full virtu-
alization (all instructions emulated), or hardware-accelerated
virtualization (only privileged instructions emulated). In addi-
tion, QEMU also provides VMs with para-virtualized access to
host peripherals (such as disks, I/O devices, network interfaces
and clocks). For VMs which do not support para-virtualization,
QEMU also provides peripheral-device emulation.

2. KVM Loadable Kernel Module enables QEMU to in-
terface with the Linux kernel. This allows QEMU-KVM to
use existing kernel functionality for resource management

(such as scheduling and isolation). Additionally, the KVM
kernel module also enables the hypervisor to take advantage
of hardware extensions like Intel VT-x and AMD-V.

In terms of clock support, QEMU-KVM provides the
para-virtual KVM-clock [25] to Linux VMs. This allows
a para-virtual guest VM to access the host’s monotonic
system clock (CLOCK_MONOTONIC) and real-time clock
(CLOCK_REALTIME). On the x86 architecture, KVM-clock
uses the Time-Stamp Counter (TSC) [26], and a memory
page mapped into the VM’s virtual-memory space to provide
low-latency clock reads. Whenever the VM is scheduled, the
hypervisor writes the current time (monotonic and real-time),
and corresponding TSC value into this page. The VM can then
use this timestamp along with reading the current TSC value
to calculate the current time. Given that both reading the TSC
(rdtsc) and accessing a memory address are non-privileged
operations, a para-virtual guest VM can perform low-latency
clock reads. For VMs which do not support para-virtualization,
QEMU-KVM provides access to emulated timers [3].

D. Quality of Time Architecture

The knowledge of QoT enables applications to adapt and
be fault-tolerant [2], while allowing the system to manage re-
sources efficiently [1]. Building on QoT, the QoT Architecture
[1], centered around a shared notion of time, allows applica-
tions to specify their timing requirements, while delivering the
required QoT and exposing timing uncertainty to applications.

In [1], the authors also introduce the timeline abstraction,
which abstracts away low-level synchronization details from
applications. This allows the underlying framework to orches-
trate the clock-synchronization service to ensure that QoT
requirements are met, while making the achieved QoT visible
to the application. Additionally, a timeline is not necessarily
tied to any standard timing reference, and in the context of
coordination, serves as a “narrow waist”. This enables devel-
opers to easily develop distributed time-based applications on
heterogeneous infrastructure, using a timeline-based API.

Consider an application that needs to perform coordinated
actions by its distributed endpoints. All of these components
bind to a common timeline, each specifying its respective
QoT requirements. The QoT Architecture supports multiple
timelines. This enables different coordinating sub-groups with
varying QoT requirements to each have its own time reference
and co-exist on the same infrastructure [1].

The QoT Architecture consists of three key components:
1) Clocks are used to expose the time-stamping and time-

keeping capabilities of the underlying hardware. Clocks
also expose their intrinsic parameters like accuracy, pre-
cision and drift, which enables uncertainty estimation.

2) System Services are responsible for clock synchroniza-
tion, distributing timeline meta-data, message passing
and quantifying timing uncertainties.

3) QoT Core acts as a bridge between QoT-aware appli-
cations, system services and the OS. It maintains syn-
chronization and timeline state, and is also responsible
for event scheduling.

System
Services

Userspace
Kernel

Synchronization
&OS Uncertainty

Hardware
Uncertainty

Total
Uncertainty

QoT-Aware
Application

Timeline-based
API

QoT CoreClocks

Delivered QoT

Fig. 2. Timeline-based QoT Architecture [1]

The main components of the QoT Architecture are illus-
trated in Figure 2. Based on this architecture, a prototype
open-source QoT Stack for Linux was introduced in [1].
This preliminary stack focused on implementing necessary
functionality over a LAN. The current version of our stack
supports Linux-based platforms (ARM and x86 architectures),
with clock-synchronization support for PTP [15] and NTP
[14] over Ethernet. The stack consists of kernel modules and
system services, and does not modify the Linux kernel. The
extensibility of our stack along with the ubiquity of Linux
make it usable on a wide variety of platforms.

The use of virtualization in cyber-physical applications
presents a challenge in terms of both guaranteeing a certain
level of QoT, as well as observing the QoT delivered to
an application. Hence, we explore solutions to efficiently
introduce the notion of QoT to hypervisor-based virtualization.

III. TIME-BASED APPLICATIONS USING QOT
Before describing QuartzV, we motivate its utility by de-

scribing an application which can be enabled by using virtu-
alization and QoT. Although the application described is from
the industrial-automation domain, the core concepts can be
adapted for other coordinated distributed application domains.

Consider an industrial-automation application, where mul-
tiple robotic arms are used to collaboratively assemble a
mechanical assembly. Collaborative manufacturing is often
required to: (i) speedup assembly (e.g. performing parallel
assembly), and (ii) perform joint tasks which maybe too
large for a single robot to operate on (e.g. cooperatively
picking and placing a large part onto the main assembly).
To successfully perform collaborative manufacturing, we need
to ensure that the robotic arms are coordinated such that, (i)
when performing parallel tasks, they do not interfere with the
proper functioning of each other, or operate in/on the same
physical space, and (ii) when performing joint tasks, they
coordinate their actuations (actions) to successfully complete
the task. While these coordination scenarios can be carried
out using extensive message passing, the overhead involved is
high. This message-passing overhead prevents a system from
scaling to multiple endpoints. Often, industrial systems are
over-engineered or hard-coded to achieve such tasks, which
limits the capabilities and flexibility of the system.

An alternative approach is to use a shared notion of time as
a primitive for coordination [1][8]. In this case, an intelligent

centralized/distributed task planner with a view of the entire
system can dynamically generate action commands with a
corresponding action timestamp, based on shared time. The
endpoints of the system can then execute these actions at the
planned time points. However, given that industrial systems are
often safety-critical, a fault-detection primitive such as QoT is
needed to handle the case of clock-synchronization failure [2].

By specifying the required QoT, each component in the
system knows the maximum level of uncertainty tolerable
to perform successful coordination. Since each node inde-
pendently maintains its own notion of QoT with respect to
the reference, a node can enter a graceful-degradation [29]
mode when the level of uncertainty exceeds the tolerable
limit. Additionally, if a coordination message is delayed or
arrives too late, all a node needs to do is compare the action
timestamp against the current time on its local clock [8]. Based
on this timestamp, the endpoint can adapt or enter a graceful
degradation mode. Given that modern oscillators drift slowly,
the probability of clock-synchronization failure is much lower
than the probability of CPUs, networks or disks failing [12].
Therefore, using a shared notion of time with QoT can enable
scalable and fault-tolerant coordination [2].

Based on the philosophy of QoT, Figure 3 illustrates a
collaborative-assembly scenario using two robot arms. The
system consists of (i) a centralized task planner running in
a VM (using QuartzV) hosted on a server machine, (ii) two
embedded-grade arm controller nodes (using the QoT Stack
for Linux), and (iii) two robot arms with sensors (to determine
state), an end effector, and real-time motor controllers.

We now describe this system in a top-down fashion:
1) Task Planner in a VM: is able to receive timestamped

sensory input from the sensors on the robotic arms, and can
be based on techniques including signal-processing, machine
learning [30], or model-based artificial intelligence [31]. Based
on the system objective, sensory inputs, and the state of
the system, the task-planner can generate receding-horizon-
based [32] timestamped action commands for the robotic
arms to perform the collaborative assembly. In the context
of the example application, the action commands can be in
the form of (i) position of the end-effector, and (ii) “pick” or
“place” actions of the end-effector. These action commands
are received by the “controller” nodes.

2) Controller Nodes: are responsible for generating a
time-parametrized feasible motion plan for their respective
robotic arms based on the action commands, and the sensory
inputs from the arm. This requires converting the coarse-
grained end-effector trajectory into feasible fine-grained joint-
motion trajectories or end-effector actions, such that collisions
are avoided. These embedded controller nodes also contain
I/O ports which enable them to directly interface with their
respective robotic arms with low latency.

3) Robot Arms: contain on-board low-level real-time
motor controllers which are responsible for carrying out the
motion plan received from their respective controller nodes.

In the described system, the task-planner node (VM) and
the controller nodes are inter-connected using a switched

12th May 2017

“Assembly”

Arm 2Arm 1

Controller 1 Controller 2

“Time-based”
Task Planner in a VM

1 ms

100 �s

Dedicated
I/O

100 �s

Dedicated
I/O

Fig. 3. Time-based Coordinated Industrial Automation

Ethernet network. All these three nodes use the QoT Stack
functionality to bind to a common timeline with their specified
QoT requirements (+/-1 ms for the task-planner node, and +/-
100 µs for the controller nodes). The synchronization service
(based on PTP [15]) can then discipline the clocks to meet the
specified QoT requirements. Notably, there is no need for the
robot arms to directly join the timeline. This is because the
on-board motor controllers of the robot arm can perform real-
time control with deterministic latency [33][34]. Additionally,
sensor values can also be accessed with deterministic latency.
This assumption holds true for most industrial robots. Thus,
due to the presence of dedicated controllers and interfaces, the
robots can carry out the motion plan specified by the embedded
controller in deterministic fashion. Additionally, using the
dedicated I/O interface, the embedded-controller node can read
the robot’s sensors with deterministic latency, and hence assign
timestamps using its own local timeline reference.

For this paper, our objective is to use QuartzV in the design
of scalable and fault-tolerant coordinated applications, like the
above, using a shared notion of time and QoT.

IV. QUARTZV EXTENSION TO THE QOT STACK

In this section, we describe the design choices involved in
bringing QoT to hypervisor-based virtualization. Subsequently,
we present the QuartzV extension to the QoT Stack for Linux
to provide QoT awareness for para-virtual guest VMs running
atop the QEMU-KVM hypervisor. QuartzV adds extensions
to the QEMU-KVM hypervisor, in order to provide clock-
synchronization-as-a-service to para-virtual guests. This en-
ables applications running in a guest VM to specify their
QoT requirements, while a host service tries to meet the
specified requirements, and feeds back the achieved QoT to
the application running in the guest VM.

We first discuss the applicability of QuartzV in a para-
virtualized setting, and later discuss how our implementa-
tion works in an environment where clocks are fully virtu-
alized (emulated), or the hypervisor cannot provide clock-
synchronization extensions. While QuartzV has been imple-
mented for QEMU-KVM, the concepts are readily applicable
to other commodity open-source hypervisors like Xen [21].

A. QoT and Virtualization

While designing QuartzV for a para-virtual setting, the
following design considerations need to be taken into account:

1) Specifying QoT Requirements: To provide QoT aware-
ness in the virtualization context, applications need to be able
to specify their QoT requirements. Hence, we need to develop
a mechanism to allow applications running in a VM to convey
their QoT requirements to a service running on the host OS.
Since specifying QoT requirements is not on the critical path
of most applications, we can afford a somewhat higher-latency
communication mechanism for this purpose.

2) Exposing QoT to Applications: To expose the notion
of QoT to applications, every timestamp read should contain
its associated uncertainty. Reading timestamps from a clock
is often on the critical path of most applications. Hence, we
must provide a timestamp along with its associated uncertainty,
with low latency. For this purpose, we require an efficient low-
latency mechanism which can transfer a timestamp, along with
the achieved QoT from the host to the guest VM.

3) Supporting Multiple VMs: The key idea of virtual-
ization is to consolidate multiple VMs on a single physical
machine. Hence, it is imperative that our implementation scale
to support multiple VMs without any impact on performance.

4) Maintaining VM Isolation: While workload consol-
idation is key, isolation between different VMs is essential.
Hence, our implementation should prevent malicious VMs
from affecting the correct operation of other VMs.

5) Portability: We aim to implement our system such
that no modification is made to the hypervisor source code.
Instead, we use existing hypervisor functionality to implement
extensions. This ensures that our implementation is portable
across different versions of the QEMU-KVM hypervisor.

B. QuartzV: Design and Implementation

Based on these considerations, we now present the design
of QuartzV, which builds upon the previously proposed QoT
Stack for Linux [1], to bring the notion of QoT to VMs. The
key components of QuartzV are as follows:

1) QoT Application Library: Also known as qotlib, it
provides QoT-specific functionality to user-space applications.
This library exposes timeline-based distributed coordination
APIs, that are independent of the platform and OS. The APIs
enable applications to (i) bind/unbind from a timeline, (ii)
specify/update their QoT requirements, (iii) schedule events
based on shared time, (iv) timestamp events, and (v) support
publish/subscribe messaging for coordination [2]. All API calls
return the QoT actually delivered to the application, providing
the ability to adapt to changes in QoT [1]. This library can
be configured with a compilation flag to enable para-virtual
guest-related functionality. This allows native applications to
be ported to a VM without any changes to the source code.

2) QoT Core Kernel Module: It acts as a bridge between
the components of the QoT Stack for Linux [1], and is
responsible for timeline management, clock management and
time-based event scheduling. Applications and system services
interact with the QoT Core using an ioctl interface exposed

over the /dev/qotusr character device. Both the host
and guest VMs contain their own QoT Core module. The
QoT core’s scheduling interface is policy-agnostic [1], and is
responsible for moving tasks from the scheduler wait-queue to
the run-queue at the specified time. This provides developers
the flexibility to choose the appropriate real-time scheduling
policy based on application priorities and requirements.

3) QoT Clocks: These are useful for maintaining a shared
notion of time, and also aid in performing clock synchroniza-
tion over a network [1]. The core clock [1] is used to maintain
a monotonic free-running (drift not disciplined) notion of time.
Each timeline-reference clock /dev/timelineX (where X
is the timeline id) is mapped from the core clock (on the host)
using the parameters tlskew (drift correction), corelast (the
core-clock timestamp at the last synchronization event) and
tllast (timeline-reference timestamp at the last synchroniza-
tion event). Using the current core timestamp, corenow, the
timeline-reference time, tlnow, can be projected as follows:

tlnow = tllast + tlskew ∗ (corenow − corelast) (1)

4) Synchronization Service: This is deployed on the
host, and synchronizes the local timeline clock, derived from
the local monotonic clock source, with the global timeline
reference. We use feed-back synchronization to discipline the
clock on a per-timeline basis. This service polls the timeline
clock over /dev/timelineX (where X is the timeline id)
to detect any updates to application QoT requirements. Based
on these application requirements, the service disciplines the
timeline-reference clock by modifying its parameters (drift
and offset) to achieve the desired levels of QoT. In doing
so, the synchronization service periodically updates the clock
mapping parameters and associated timestamp uncertainty
lower and upper bounds, εl and εh, on a per-timeline basis.

5) Inter-VM Shared-Memory Server: Also known as
ivshmem_server, this is deployed on the host, and creates
a POSIX shared-memory region which is used to distribute
clock parameters and timestamp-uncertainty information to
applications running in guest VMs.

6) QoT Virtualization Service: Also referred to as
qot_virtd, this is deployed on the host, and aggregates
application-specific QoT requirements from different guest
VMs hosted on the host machine. It creates a Unix socket,
and acts as a server, while the guest VMs are its clients.
Applications running in a VM can send their timeline informa-
tion and QoT requirements to qot_virtd using the created
socket. Additionally, whenever the synchronization service
updates the clock parameters and estimated timing uncertainty
of a given timeline reference, qot_virtd is responsible for
conveying these changes back to the application, using the
shared-memory region created by ivshmem_server.

Using the above components, we now describe their interac-
tions which facilitate the transfer of QoT and timeline-related
information between the applications deployed inside guest
VMs and the services running on the host.

1) Specifying QoT Requirements (Guest VM to Host):
To transfer application-specific QoT requirements from the

guest to the host, we utilize the para-virtual VirtIO-serial
interface, also referred to as virtserial [27]. VirtIO-
serial provides bi-directional serial communication between
applications running inside guest VMs with a host service.
This interface is exposed to the guest application through a
QEMU character-device driver front-end in the VM. Using an
API, guest applications can read from or write messages to the
character-device front-end. Since each VM runs as a QEMU
process, the QEMU backend can forward guest application
messages to a specified service on the host over a Unix
socket. When an application in a VM binds to a timeline, the
information is sent to qot_virtd using virtserial via
the socket interface. The daemon then creates a version of the
timeline on the host (using the QoT Core kernel module [1]),
and registers the QoT requirements of the application with the
host OS. qot_virtd also sends an acknowledgment to the
guest application to indicate if the request was successfully
accepted. Figure 4 highlights this interaction of each guest
VM application with qot_virtd, and illustrates the transfer
of application QoT requirements from a guest (VM 1) to the
host using VirtIO-Serial. Although our stack supports multiple
VMs, for the purpose of illustration, we show only one VM.

2) Facilitating Low-Latency Clock Reads: In QuartzV,
we utilize the para-virtualized dependent-clock paradigm and
perform clock synchronization on the host on a per-timeline
basis. Hence, we maintain a monotonic free-running core clock
on the host, and compute its disciplining parameters (drift
and offset), with respect to a global timeline reference. These
disciplining parameters allow us to project the monotonic core
clock to a global timeline reference. Therefore, to compute the
current timeline time reference, a guest application needs to
access a monotonic counter (on the host), and apply the clock-
discipline parameters to this monotonic clock. Additionally,
the synchronization service also computes the achieved QoT.
This estimated QoT enables an application to read a timestamp
with its associated uncertainty.

To enable low-latency reads of the timeline reference, we
need to provide low-latency access to:

1) the monotonic core clock,
2) the timeline clock-projection parameters and,
3) the estimated QoT
We solve problem (1) by utilizing the para-virtual

KVM-clock, which provides low-latency access to the
host’s real-time (CLOCK_REALTIME) and monotonic
(CLOCK_MONOTONIC) clocks. Of these two clocks,
CLOCK_MONOTONIC provides a monotonic clock source,
and hence can be used as a core clock. Thus, KVM-clock
allows the host OS and the guest VMs to, in practice, share
the same core clock. Therefore, timeline clock-projection
parameters calculated with respect to the host core clock can
be applied (using Equation 1) inside the VM as well.

To solve problems (2) and (3), we use the inter-VM shared-
memory (ivshmem) [28] interface to memory-map a shared-
memory region containing the timeline clock parameters
and uncertainty information into the guest VM application’s
virtual-memory space. Therefore, reading a timeline-reference

12th May 2017

VirtIO-serial Unix Socket
/tmp/qot_virthost

Kernel

Userspace

QoT Core
Kernel Module

QoT Clock Sync
Service

QoT Clocks
(NIC + Core)

VM 1

Application

QoT API Library

VirtIO-serial chardev

Linux
Kernel

KVM
Kernel
Module

QEMU
VirtIO Frontend

VirtIO Backend

/dev/qotusr /dev/timelineX /dev/ptpX

- Application QoT/Timeline Requests
- Application Request Status Replies
- Clock Read/Discipline Requests

Legend

Socket Async Poll

App
Requests

qot_virtd
Replies

QoT Virt Daemon
qot_virtd

Ti
m

e
lin

e
C

re
at

e
/D

es
tr

o
y

Q
o

T
R

e
q

u
ir

e
m

e
n

ts

Ti
m

e
lin

e
P

ar
am

et
e

r
R

e
ad

/D
is

ci
p

lin
e

C
lo

ck

R
e

ad
/D

is
ci

p
lin

e

Hypervisor

VMs

Fig. 4. Specifying QoT information from guest applications to host service
qot_virtd using VirtIO serial

timestamp involves reading KVM-clock and applying the
timeline-projection and uncertainty parameters from shared
memory. Since, these instructions are all unprivileged, the
timeline-reference time can be read with low latency.

When a VM boots up, it registers with ivshmem_server
over the Unix socket /tmp/ivshmem_socket (created
by ivshmem_server). The server replies with a read-
only file descriptor to the POSIX shared-memory region
/dev/shm/ivshmem (created by ivshmem_server).
ivshmem exposes this shared-memory region as a PCI device
to the guest. When a guest application binds to a timeline,
it interacts with this PCI device to memory-map the shared-
memory region with read-only access into its own virtual-
memory space. The fact that this shared-memory space is
potentially shared across multiple VMs makes it necessary that
VMs have read-only access. This provides isolation between
different VMs while enabling low-latency clock reads.

In our implementation, we launch the ivshmem_server
service on the host. This service provides a guest VM the
right to access a read-only shared-memory region, which con-
tains the timeline clock parameters, and estimated uncertainty
information. In addition to the guest VMs, the QoT Virtual-
ization Service, qot_virtd, also memory-maps this shared-
memory region with read-write access into its own virtual-
memory space. Therefore, whenever the synchronization ser-
vice updates the clock parameters and uncertainty information
corresponding to a given timeline, qot_virtd writes these
parameters to the shared-memory region which is memory-
mapped into a guest application’s virtual-memory space. Fig-
ure 5 highlights this interaction of guest VM applications with
ivshmem_server and qot_virtd, and illustrates the
sharing of per-timeline clock parameters and uncertainty infor-
mation from host to guest (VM 1) using the memory-mapped
shared-memory region created by ivshmem_server.

C. QoT and Full Virtualization

For guest VMs which do not support para-virtualized clocks,
or hypervisors which do not permit extensions, the notion
of QoT can still be supported. Our latest implementation of
the QoT Stack for Linux allows all of its components: QoT
core, QoT clocks, and clock-synchronization service (both

12th May 2017

ivshmem Unix Socket
/tmp/ivshmem_socket

Kernel

Userspace

QoT Core
Kernel Module

QoT Clock
Sync

Service

QoT Clocks
(NIC + Core)

VM 1

Application

QoT API Library

ivshmem PCI dev

Linux
Kernel

KVM
Kernel
Module

QEMU
ivshmem Frontend

ivshmem Backend

/dev/timelineX

- shmem memory map requests
- ivshmem setup at VM boot

- Clock Parameter Flow

Legend

ivshmem setup
at VM boot

Read-only
memory
map at

App start
Read-only
shmem fd

QoT Virt
Daemon

qot_virtd

Ti
m

e
lin

e
C

lo
ck

P

ar
am

s
+

Q
o

T
R

e
ad

Ti
m

e
lin

e
C

lo
ck

D

is
ci

p
lin

e
 +

 Q
o

T
Es

ti
m

at
io

n

ivshmem
server

m
em

o
ry

 m
ap

Ti
m

e
lin

e
C

lo
ck

P

ar
am

s
+

Q
o

T
W

ri
te

Read-only
memory
map at

VM boot

shared memory /dev/shm/ivshmem

Timeline Clock
Params

+ QoT read

Hypervisor

VMs

Fig. 5. Sharing clock parameters and QoT information from host service qot_virtd to guest VM applications using ivshmem

NTP-based and PTP-based with software timestamping), to
run inside a VM which does not support para-virtualization.
However, the overhead of emulated hardware timers (full
virtualization) will cause a loss in application performance,
due to higher clock-read latency. Additionally, the overhead of
an emulated network stack and lack of hardware-timestamping
support (for PTP) can degrade the achieved synchronization
accuracy and QoT. Figure 6 illustrates the components of the
QoT Stack for Linux, deployed in a QEMU-KVM Linux VM
(VM 1), which does not support para-virtualized clocks.

To support a core clock based on CLOCK_MONOTONIC,
our latest implementation of the QoT Stack for Linux imple-
ments an architecture-independent QoT core clock driver [1],
which allows the entire QoT stack to be deployed on any
Linux-based platform including VMs. This implementation
provides a monotonic clock based on CLOCK_MONOTONIC,
and provides time-based scheduling by using the existing
Linux high-resolution timer (HRTIMER) interface. Our stack is
open source, and the source code and installation instructions
can be found at https://bitbucket.org/rose-line/qot-stack.

D. QoT-based Industrial Automation using QuartzV

We now describe a simple test prototype to realize the
industrial-automation application described in Section III. We
utilize the same structure as the described application and the
main components are as follows:

1) The Task Planner running in a para-virtual VM with
QuartzV is responsible for generating time-parametrized tasks.
The VM is deployed atop QEMU-KVM on the desktop Onyx
running Ubuntu 14.04 with a quad-core Intel i7 processor.

2) Two Controller Nodes each deployed on a Beaglebone
Black [35] embedded platform (Agate and Citrine) with the
QoT Stack for Linux, are responsible for generating and
executing motion plans based on the time-based task plans.

3) Simulated Robot Arms receive motion plans from the
controller nodes using the ROS-based [36] publish-subscribe
mechanism. Since we did not have ready access to real robots,
we utilize ROS Indigo [36] with the Gazebo simulator [37] to
simulate two Universal Robotics UR5 [33] robot arms along

12th May 2017

QEMU
Hardware

Timer
Emulation

VM 1

Application

QoT API Library

QoT Core
Kernel Module

QoT Clocks
(Core)

QoT Clock
Sync

Service

Kernel

Userspace

Linux
Kernel

KVM
Kernel
Module

Clock Hardware
Drivers

App
Timeline/QoT

Requests

Clock
Parameters

Read/Discipline

Hypervisor

VMs

Fig. 6. QoT Stack for Linux in a fully-virtualized guest VM

with their motion controllers (using ros-control [38]).
The simulation is performed on the desktop machine Jasper
running Ubuntu 14.04 with a quad-core Intel i7 processor and
an Nvidia GT620M GPU.

We consider a simple scenario where two robots collabo-
ratively pick and place a component synchronously. However,
our testbench can be used to develop and test more complex
application scenarios. Additionally, the use of ROS enables the
same application code to be deployed directly on a real robot.
A video showing our prototype application can be found at
https://youtu.be/7NoxnZEWDrM.

V. EXPERIMENTAL EVALUATION

We now present some experimental results to benchmark
the performance of QuartzV using as metrics (i) clock-
synchronization accuracy, and (ii) clock-read latencies. We use
the QoT Stack for Linux deployed natively as the baseline.
Before stating the results, we describe our experimental setup.

A. Experimental Setup

Figure 7 illustrates the different nodes in our clock-
synchronization test-bed. All the nodes are interconnected by
an IEEE 1588 (PTP)-compliant Ethernet switch [40].

Our evaluations are performed on a quad-core (8 virtual
cores) x86-64 Intel i7-based desktop Onyx, which hosts the
QoT-based benchmarking applications. Onyx utilizes Ubuntu
14.04 with the Linux 4.4 kernel and also contains version 2.8

of the QEMU-KVM hypervisor. This enables Onyx to host
VMs utilizing QuartzV. The Intel i7 CPU contains a constant-
invariant TSC which always maintains a steady frequency, and
thus can be used as a reliable clocksource. Additionally, Onyx
is equipped with an IEEE 1588 (PTP)-compliant Intel 82574L
network interface [39] which supports hardware timestamping
at the PHY layer. The presence of hardware timestamping
allows us to perform accurate clock synchronization using the
QoT Stack for Linux’s PTP-based synchronization service.

We utilize the Beaglebone Black node Citrine as our clock
reference. The Beaglebone Black ARM-based TI AM335x
chipset [35] contains an IEEE 1588-compliant network inter-
face which supports hardware timestamping at the PHY Layer.

To measure the accuracy of clock synchronization on Onyx,
with respect to the reference node Citrine, we utilize the nodes
Amethyst and Agate. To measure synchronization accuracy, we
need to take (near) simultaneous timestamps of a common
event on both the reference (master) and the target (slave).
By comparing these timestamps over a period of time, we
can compute the synchronization accuracy. Therefore, we
use (i) the node Agate (Beaglebone Black) to periodically
(every second) generate UDP-multicast packets which serve
as common-reference events providing timestamping oppor-
tunities, and (ii) the node Amethyst to generate reference
timestamps (equivalent to Citrine) for the UDP datagrams.

Amethyst has an x86-64 Intel i7 processor, running Ubuntu
14.04 with the Linux 4.12 kernel, and is equipped with
an Endace 7.5G2 DAG card [41]. The DAG card contains
two ports which intercept all packets flowing between Agate
and Onyx. This card also provides 7.5 nanosecond resolution
timestamping [41], and processing of packets at line rate.
Therefore, all the UDP packets from Agate can be accurately
timestamped with no significant delay introduced by the DAG
card. The same UDP packets can subsequently be timestamped
on Onyx (using socket/hardware timestamping [42] on the
host and guest VMs). Hence, if we assume (for now) that
the DAG card on Amethyst can provide equivalent timestamps
as the reference Citrine, then by comparing these timestamps
with those (nearly) simultaneously generated on Onyx, we
can compute the clock-synchronization accuracy of Onyx with
respect to Citrine. Note that the introduction of the DAG card
adds noise to our measurements, as there is some latency
between the DAG timestamp and the timestamp on Onyx.
However, given that Onyx and the DAG card share a dedicated
link, the latency is low.

To accurately synchronize the DAG card on Amethyst to the
reference Citrine, we utilize its inbuilt PPS (Pulse-per second)
input. We use Citrine (Beaglebone Black) to generate a ref-
erence PPS signal over a GPIO pin (using a hardware timer),
which is fed to the PPS input of the DAG card. The DAG
card can use this signal along with Amethyst’s system clock
(CLOCK_REALTIME) to precisely synchronize its clock with
<10ns accuracy. Hence, to achieve precise synchronization
(using PPS), we also need to synchronize Amethyst’s system
clock (CLOCK_REALTIME) to the reference clock on Citrine,
with an accuracy within 1s. This can be done using Linux

12th May 2017

Agate
(Event Generator)

Citrine
(Clock Reference)

Clock SynchronizationTimeline Clock
Master

(QoT Stack for Linux)

Timeline Clock
Slave

(QuartzV)

UDP Multicast
Transmission

DAG Card
(Reference Timestamp)

Amethyst
(External Monitor)

Onyx
(Evaluation Platform)

PPS Out

PPS In
UDP flow

UDP flow
inline

forward

- Clock Sync - PPS - UDP Flow

Virtual Machines

Fig. 7. QuartzV Clock-Synchronization Test-bed

PTP’s [43] two-stage system-clock synchronization (ptp4l and
phc2sys). Amethyst is also equipped with an IEEE 1588-
compliant Intel 82574L network interface [39] which supports
hardware timestamping at the PHY layer. Hence, using Linux
PTP, we can synchronize CLOCK_REALTIME to the reference
clock on Citrine to an accuracy on the order of microseconds,
which is more than sufficient compared to the requirement of
within 1s. Along with PPS, this allows us to achieve DAG
clock synchronization with accuracy on the order of a few
nanoseconds. Therefore, this setup allows us to externally
measure the synchronization accuracy of QuartzV.

B. Synchronization Accuracy

We now compare the clock-synchronization accuracy (or
error), with respect to the reference Citrine, achieved by (i)
QuartzV for a Linux VM with para-virtual-clock support, (ii)
the QoT Stack for Linux deployed natively, and (iii) the QoT
Stack for Linux deployed in a VM with a fully-virtualized
clock. Note that, in cases (i) and (ii), clock synchronization
happens on the host OS, while in case (iii) clock synchroniza-
tion happens inside the VM. We use Ubuntu 14.04 VMs, each
configured to use 2 Virtual CPU cores and 2 GB of memory.

Figure 8 shows the histogram of the measured clock-
synchronization accuracy, and Figure 9 shows a box-plot of the
clock-synchronization accuracy for the mentioned scenarios.
The measurements were taken over a period of six hours.
Notice that the accuracy distribution achieved by the QoT
Stack natively (Figure 8(a)) and QuartzV for para-virtual VMs
(Figure 8(b)) is nearly identical with a mean of 24.28µs
and 26.12µs respectively, and standard deviation of 5.05µs
and 5.12µs respectively. This is because QuartzV performs
clock synchronization on the host and transfers the clock-
projection parameters to the guest VM. On the other hand, the
accuracy achieved by the fully-virtualized QoT Stack inside
a VM (Figure 8(c)) is lower with a mean of 70.23µs and
standard deviation of 128.28µs. This is due to the additional
packet-timestamping uncertainty introduced by the virtualized
networking stack.

The ability to provide QoT bounds also enables fault
detection. Figures 10(a) and 10(b) plot the upper and lower
QoT bounds calculated by para-virtual QuartzV, and the fully-
virtualized QoT Stack deployed inside a VM respectively.
Observe that the computed bounds always bound the accuracy
measured by the experimental test-bench. From these results,

Measured Accuracy (µs)

0 10 20 30 40 50 60

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Native QoT Stack Synchronization Accuracy

(a)
Measured Accuracy (µs)

0 10 20 30 40 50 60

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Para-Virtual QuartzV Synchronization Accuracy

(b)
Measured Accuracy (µs)

0 50 100 150 200

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0

0.005

0.01

0.015

0.02

Fully-Virtual QoT Stack Synchronization Accuracy

(c)

Fig. 8. Measured Clock-Synchronization Error Distributions. The y-axis represents the probability density, and the x-axis the measured error

Deployment Scenario

Native Para-Virtual QuartzV Fully-Virtual

S
y
n

c
h

ro
n

iz
a

ti
o

n
 A

c
c
u

ra
c
y
 (

µ
s
)

0

50

100

150

200

250
Clock-Synchronization Accuracy Boxplot

Fig. 9. Clock-Synchronization Accuracy Boxplot. The center ’red’ line
represents the median accuracy, the inner whiskers the 25th and 75th percentile
accuracy, and the outer whiskers the minimum and maximum error observed.

Time(s) ×10
4

0.5 1 1.5 2

S
y
n

c
h

ro
n

iz
a

ti
o

n
 E

rr
o

r
(µ

s
)

-60

-40

-20

0

20

40

60

QuartzV: Measured Error and Reported QoT

Measured Error

QoT Lower Bound

QoT Upper Bound

(a)
Time(s) ×10

4

0.5 1 1.5 2

S
y
n

c
h

ro
n

iz
a

ti
o

n
 E

rr
o

r
(µ

s
)

-300

-200

-100

0

100

200

300
Full-Virt QoT Stack: Measured Error and Reported QoT

Measured Error

QoT Lower Bound

QoT Upper Bound

(b)

Fig. 10. QoT Bounds: (a) para-virtual QuartzV, (b) fully-virtual QoT Stack

we can conclude that QuartzV can provide near-native clock-
synchronization accuracy to applications running in VMs.

C. Clock-Read Latency

To compare clock-read latencies, we consider the following
scenarios: (i) the QoT Stack for Linux deployed natively, with
the x86 Time-Stamp Counter (TSC) clocksource, (ii) a para-
virtual Linux VM using QuartzV with the KVM-clock [3]
clocksource, and (iii) the QoT Stack for Linux deployed in a
VM with an emulated (fully-virtualized) x86 High-Precision
Event Timer (HPET) clocksource. For each of these cases, we
measure the latency of reading a timeline reference, which is
calculated by applying the projection parameters to the QoT
core clock, QOT_CORE (based on CLOCK_MONOTONIC). To
measure a clock’s read latency, we read the clock in a contin-
uous loop, and take the difference between adjacent readings.
For the sake of comparison, we also present latency measure-
ments for the clocks exposed by Linux (CLOCK_MONOTONIC
and CLOCK_REALTIME) along with the x86 TSC.

The clock-read latency data can be found in Table I. We
present the minimum, average and standard deviation of the

TABLE I
CLOCK-READ LATENCY (NANOSECONDS)

Scenario Clock Min Average Std. Dev

Native QoT Stack TSC 4 7.41 59.55
(x86 TSC) REALTIME 13 26.19 172.44

MONOTONIC 13 18.41 95.74
QOT_CORE 16 32.01 123.69

Para-virtual QuartzV TSC 4 8.28 88.75
(KVM-clock) REALTIME 31 40.46 246.47

MONOTONIC 31 34.79 233.83
QOT_CORE 54 60.71 242.34

Fully-virtual QoT Stack TSC 4 8.19 95.18
(Emulated HPET) REALTIME 1785 2038.02 9721.72

MONOTONIC 1786 2022.13 8912.25
QOT_CORE 1892 2435.64 9512.45

latency measurements for all of the clocks being compared.
The data is averaged across 1000 experiments, each consist-
ing of 1 million consecutive clock reads. Observe that, for
CLOCK_MONOTONIC, CLOCK_REALTIME and QOT_CORE,
the average and minimum clock-read latency observed in the
para-virtual guest VM is roughly twice (˜2x) that observed in
the native environment. This reflects the overhead introduced
by using the para-virtual KVM-clock as a clocksource. Com-
pare this with the fully-virtualized case which has latencies
that are 3 orders of magnitude (>100x) greater than the
native setting. This is due to the overhead of emulating the
HPET clocksource. On the other hand, reading the TSC (using
the rdtsc instruction) has nearly the same latency in all
three scenarios. This is because rdtsc is an unprivileged
instruction and can be executed natively [22].

QOT_CORE (QoT core clock) is implemented as a wrapper
around CLOCK_MONOTONIC. Observe that, in all the three
cases, the observed latency in reading QOT_CORE is slightly
greater than CLOCK_MONOTONIC. This is because of the
additional overhead of applying the timeline clock-projection
parameters. For the para-virtual scenario using QuartzV, the
QOT_CORE latency is ˜1.8x that of CLOCK_MONOTONIC.
This is due to the overhead of accessing the shared-memory
region exposed by ivshmem. However, this overhead is
minimal and does not affect the order of magnitude of the
clock-read latency, as compared to CLOCK_MONOTONIC.

If we compare the two virtualization scenarios based on
standard deviation, we can observe that reading the para-

Time(s)

0 300 600 900 1200 1500 1800 2100 2400

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-60

-40

-20

0

20

40

60

QuartzV Scalability: CPU-stress

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

VM 6

Started

VM 7

Started

VM 8

Started

(a)
Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-60

-40

-20

0

20

40

60

QuartzV Scalability: Network Rx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(b)
Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-80

-60

-40

-20

0

20

40

60

80

QuartzV Scalability: Network Tx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(c)

Fig. 11. QuartzV Synchronization Scalability Results. The dashed lines represent moments in time where a new VM was spawned

Time(s)

0 300 600 900 1200 1500 1800 2100 2400

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-1000

-500

0

500

1000
FV QoT Stack Scalability: CPU-stress

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 6

Started

VM 5

Started

VM 7

Started

VM 8

Started

(a)
Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-3000

-2000

-1000

0

1000

2000

3000
FV QoT Stack Scalability: Network Rx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 4

Started

VM 5

Started

VM 2

Started

VM 3

Started

VM 1

Started

(b)
Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

×10
4

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FV QoT Stack Scalability: Network Tx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(c)

Fig. 12. Fully-Virtual QoT Stack Synchronization Scalability Results. The dashed lines represent moments in time where a new VM was spawned

virtual KVM-clock clocksource provides approximately 40x
lower standard deviation (clock-read latency variability) than
an emulated clocksource. This lower variability translates to
better QoT. Additionally, note that the QuartzV implementa-
tion of the QOT_CORE clock has similar standard deviation as
CLOCK_MONOTONIC. Therefore, we conclude that QuartzV
provides minimal loss in timing performance (latency and
uncertainty) compared to the native case, while allowing
services on the host to expose the notion of Quality of Time
to applications running in guest VMs.

Notice that for both the para-virtual and fully-virtual scenar-
ios, the clock-synchronization error is an order of magnitude
(>10x) higher than the clock-read latency. Thus, the network
residency and timestamping uncertainties are the bottlenecks
for achieving good QoT for an application in a VM.

D. Clock-Synchronization Scalability

We now analyze the scalability of (i) QuartzV for Linux
VMs with para-virtual clock support, and (ii) the QoT Stack
for Linux deployed in a VM utilizing full virtualization.
Our experiments measure the clock-synchronization accuracy
achieved in the presence of competing VMs present on the
same host. To test the limits of both approaches, we consider
scenarios involving competing VMs with CPU and network-
intensive workloads.

Figures 11 and 12 provide the scalability results for the
para-virtual QuartzV setup, and the fully-virtual QoT Stack
respectively. In both figures, subplots (a) provide results in
the presence of competing VMs with CPU-intensive workload,
subplots (b) provide results in the presence of competing

VMs with network data-reception-intensive workload, and
subplots (c) provide results in the presence of competing
VMs with network data-transmission-intensive workload. Each
plot shows the measured clock-synchronization accuracy and
reported QoT bounds. The x-axis denotes the progression
of time in seconds, and the y-axis indicates the measured
synchronization error in microseconds. Please note that each
sub-plot has a different scale for the y-axis.

Figures 11(a) and 12(a) present scalability results when
multiple VMs with CPU-intensive workload are present. To
test the limits of our approach, we consider a maximum of
8 VMs, each with 1 virtual core and 2 GB of memory, as
our test-node Onyx has 8 virtual cores and 16 GB of memory.
Each VM runs a simple QoT-aware application which binds
to a timeline, and reads the timeline clock in a tight loop with
real-time priority. In addition, each VM also utilizes the stress
tool [44] to spawn a single CPU-intensive thread, without real-
time priority. This ensures that any CPU capacity left-over by
the QoT-aware application, will be consumed by the stress
tool. We spawn a new VM every 300 seconds, and the dashed
lines in the plot represent points in time where a new VM was
spawned. In practice, we observe that our test-bed system’s
CPU is fully utilized with 6 CPU-intensive VMs. This is due
to the use of some processing capacity by the host OS, the
graphics sub-system, and QEMU-KVM.

Observe that, for the para-virtual QuartzV case (Figure
11(a)) there is no significant change in synchronization accu-
racy as new CPU-intensive VMs are spawned. This is because
clock-synchronization is performed in the host OS, and as
long as the synchronization service has sufficient resources, the

accuracy remains unaffected. Additionally, the use of hardware
timestamping (available only on the host), ensures that the
packet-timestamping uncertainty is unaffected by CPU load.
On the other hand, for the fully-virtualized QoT Stack (Figure
12(a)), as the VM count grows higher, the synchronization
accuracy degrades, and greater instability can be observed in
the obtained accuracy. This is because clock synchronization
is performed inside the VM, and the networking stack is
emulated by the hypervisor. Thus, greater CPU load increases
the uncertainty in the software timestamping of synchroniza-
tion packets, and makes the synchronization service unstable.
This in turn degrades accuracy. Specifically, after the addition
of the 7th VM, the system is overloaded, and there are
durations where the synchronization accuracy is significantly
degraded (>5 times the case without overload). The QoT
bounds returned by the system reflect this instability in the
fully-virtual synchronization service.

Figures 11(b)(c) and 12(b)(c) present scalability results
when multiple VMs with network-intensive workloads are
present. In these experiments, we consider a single VM run-
ning a QoT-aware application, and a maximum of 5 competing
VMs, each with 1 virtual core and 2 GB of memory, and no
per-VM bandwidth restrictions. We spawn a new VM every
200 seconds, and the dashed lines in the plot represent points
in time where a new VM was spawned. Each VM uses the iperf
tool [45] to send/receive TCP packets to/from another machine
on the LAN, such that the available network bandwidth is
saturated. We observed that, without bandwidth regulation,
a single VM is able to nearly saturate the network. Further
adding new VMs causes the load to grow incrementally until
the 4th VM, after which the bandwidth is fully saturated. This
is because, in our setup, the 100 Mbps industrial PTP switch
[40] is the network bottleneck, as compared to the 1 Gbps
Ethernet card on the host Onyx.

Notice that, for the para-virtual QuartzV case, with network
data-reception-intensive workload (Figure 11(b)), the achieved
synchronization accuracy and uncertainty (variance) degrades
by ˜1.2x, as compared to the load-free scenario shown in
Figure 10. However, this degradation is minimal and does
not significantly change as new competing VMs are added.
This is because clock synchronization is performed on the
host, and uses hardware timestamping. Similarly, for the para-
virtual QuartzV case with network data-transmission-intensive
competing workload (Figure 11(c)), the achieved synchro-
nization accuracy is similar to the network data-reception-
intensive case. However, the synchronization uncertainty (vari-
ance) degradation is higher by ˜1.3x, as compared to the
previous case. This observation especially holds true when
more competing VMs are present (> 3), and is reflected by
the increase in the reported QoT bounds.

On the other hand, for the fully-virtualized QoT Stack
(Figure 12(b)(c)), as the competing network-intensive VMs
increase, on average the synchronization accuracy degrades
significantly (˜1.8x-4x in different regions). Moreover, at the
instances where new VMs are added, greater instability can
be observed in the obtained accuracy. Also, observe that,

for the network data-reception-intensive case, the accuracy
significantly degrades on the addition of the 4th VM, and for
the data-transmission intensive case, this can be observed at
the point of addition of the 3rd VM. The accuracy degrada-
tion is one order-of-magnitude worse for the network data-
transmission-intensive case, and this is reflected by the QoT
bounds returned by the system, which are, in the worst-case,
about ˜10x of those reported in the presence of network data-
reception-intensive load.

For both the para-virtual and fully-virtual scenarios, the
accuracy degradation observed is greater in the presence of
data-transmission-intensive network load. This is because, for
the network-reception case, as the incoming traffic increases,
there is more congestion at the PTP switch, as the switch is the
bottleneck. On the other hand, for the network-transmission
case, as the switch becomes congested, packets start getting
dropped, and there are more re-transmission attempts made
at the host Ethernet card (due to TCP), thus causing greater
congestion at the host. However, the degradation of both
the measured accuracy and computed QoT bounds observed
while using para-virtual QuartzV is minimal, as compared
to the significant degradation observed while using the fully-
virtualized QoT Stack inside a VM. This is explained by the
fact that, during overload, the overhead of using an emulated
networking stack creates greater uncertainties and delays in
handling and timestamping synchronization packets.

In summary, our scalability experiments indicate that, for
the para-virtual QuartzV approach, CPU-intensive VMs do not
significantly affect clock-synchronization accuracy when: (i)
adequate hard CPU reservations are used (already guaranteed
by default in all hypervisors), (ii) Virtual Machine over-
commit is avoided (i.e., not allowing more VMs than available
resources), and (iii) by ensuring that the clock-synchronization
service has sufficient resources. However, the same cannot be
said for the fully-virtualized QoT Stack deployed inside a VM.
For the network-intensive scalability experiments, we have ob-
served that, for both QuartzV and the fully-virtual QoT Stack,
heavy network load does affect the clock-synchronization
accuracy and the reported QoT bounds. The degradation in the
observed accuracy is significant for the fully-virtual QoT Stack
while being minor for the para-virtual QuartzV approach. This
degradation is caused due to added uncertainty in network
timestamping and packet residency delays, and can be avoided
by restricting the network bandwidth available to a VM, based
on a user-specified limit. Such functionality is available in
most hypervisors including QEMU-KVM.

Figures 13 and 14 present scalability results in the pres-
ence of bandwidth-restricted network-intensive VMs, for para-
virtual QuartzV and the fully-virtual QoT Stack respectively.
We consider a maximum of 5 competing VMs, each of which
has its transmission and reception bandwidth restricted to 2
MB/s (16 Mbps). In both figures, subplots (a) provide results in
the presence of competing VMs with network data-reception-
intensive workload, and subplots (b) provide results in the
presence of competing VMs with network data-transmission-
intensive workload. For both the para-virtual QuartzV scenario

Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-60

-40

-20

0

20

40

60

QuartzV Scalability: Regulated Network Rx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(a)
Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-60

-40

-20

0

20

40

60

QuartzV Scalability: Regulated Network Tx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(b)

Fig. 13. QuartzV Synchronization Scalability Results with per-VM Network Reception/Transmission Bandwidth restricted to 2 MB/s

Time(s)

0 200 400 600 800 1000

S
y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-1000

-500

0

500

1000

FV QoT Stack Scalability: Regulated Network Rx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(a)
Time(s)

0 200 400 600 800 1000
S

y
n
c
h
ro

n
iz

a
ti
o
n
 E

rr
o
r

(µ
s
)

-1000

-500

0

500

1000

FV QoT Stack Scalability: Regulated Network Tx

Measured Error

QoT Lower Bound

QoT Upper Bound

VM 1

Started

VM 2

Started

VM 3

Started

VM 4

Started

VM 5

Started

(b)

Fig. 14. Fully-Virtual QoT Stack Synchronization Scalability Results with per-VM Network Reception/Transmission Bandwidth restricted to 2MB/s

and the fully-virtual QoT Stack, the plots indicate that restrict-
ing the bandwidth of competing VMs can prevent significant
degradation of synchronization accuracy, as compared to the
scenario with no bandwidth restrictions.

E. Clock-Read Scalability

Figure 15 plots the average clock-read latency of the para-
virtual QuartzV approach with multiple VMs continuously
performing simultaneous clock reads. Observe that for both
QOT_CORE and CLOCK_MONOTONIC, the clock-read latency
increases slightly for each new VM spawned. This is due to
the unavoidable contention in reading the hardware counter
to compute the time. Thus, as qot_virtd writes the clock-
discipline parameters to a shared-memory region which all
VMs can simultaneously read from, there is no bottleneck in
our implementation, which allows QuartzV to easily scale and
support multiple VMs.

VI. CONCLUSION AND FUTURE WORK

The emergence of geo-distributed coordinated CPS makes
it essential to utilize a shared notion of time along with QoT
to enable fault-tolerant scalable coordination. The notion of
QoT enables the calculation of timestamp uncertainty bounds
with respect to a clock reference. If these supplied uncertainty
bounds exceed an application-specified acceptable limit, the
application can enter a graceful-degradation mode, and thus
be fault-tolerant in the face of degraded QoT.

Given that virtualization is increasingly utilized in cyber-
physical applications, we introduced the QuartzV extension to
the QoT Stack for Linux to make VMs QoT-aware. QuartzV

Number of VMs

1 2 3 4 5 6A
v
e
ra

g
e
 C

lo
c
k
-R

e
a
d
 L

a
te

n
c
y
 (

n
s
)

0

10

20

30

40

50

60

70

80
Clock-Read Latency Scalability

CLOCK_MONOTONIC

QOT_CORE

Fig. 15. QuartzV Clock-Read Scalability Results

harnesses para-virtual clocks along with the dependent-clock
paradigm [16] to provide near-native timing performance in
VMs. We also demonstrated the utility of QuartzV by using it
in a prototype industrial-automation application. This, in turn,
illustrates that QoT-awareness makes it possible for intelligent
CPS applications to dynamically take coordination decisions,
based on a shared notion of time and the delivered QoT.

For VMs which do not support para-virtual clocks, or
hypervisors which do not permit extensions, we extended the
QoT Stack for Linux so that it can be entirely deployed in a
VM. However, our experiments indicate that QuartzV’s para-
virtual implementation can achieve much higher synchroniza-
tion accuracy, better scalability and timing performance.

In future work, we will extend our QoT Stack for Linux to
support OS-level virtualization technologies (containerization).
Additionally, we will focus on making our timeline-based
coordination protocol scale across heterogeneous networking
technologies and synchronization domains.

ACKNOWLEDGEMENTS

The authors would like to thank Fatima Anwar, Andrew
Symington, Adwait Dongare, Anthony Rowe and Mani Srivas-
tava for their efforts on the QoT Stack for Linux. This research
is funded in part by the National Science Foundation under
award CNS-1329644. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of NSF, or the U.S. Government.

REFERENCES

[1] F. Anwar, S. D’souza, A. Symington, A. Dongare, R. Rajkumar, A. Rowe
and M. Srivastava, “Timeline: An Operating System Abstraction for Time-
Aware Applications”, in Proc. of IEEE Real-Time Systems Symposium,
2016

[2] S. D’souza and R. Rajkumar, “Time-based Coordination in Geo-
Distributed Cyber-Physical Systems”, in Proc. of USENIX Workshop on
Hot Topics of Cloud Computing, 2017

[3] “Kernel-based Virtual Machine”, http://www.linux-kvm.org/
[4] J. Enright and P. Wurman, “Optimization and Coordinated Autonomy in

Mobile Fulfillment Systems”, In Proc. of AAAI Workshop, 2011
[5] SAE J2735 Standard, https://ntl.bts.gov/lib/51000/51100/51167/DE156E

CC.pdf
[6] M. Buevich, X. Zhang, D. Schnitzer, T. Escalada, A. Jacquiau-Chamski,

J. Thacker and A. Rowe, “Microgrid Losses: When the Whole is Greater
Than the Sum of Its Parts”, In Proc. of 7th IEEE/ACM International
Conference on on Cyber-Physical Systems, 2016

[7] M. Satyanarayanan et al., “The Case for VM-Based Cloudlets in Mobile
Computing”, in IEEE Pervasive Computing, Vol. 8, Issue: 4, 2009

[8] B. Liskov, “Practical Uses of Synchronized Clocks in Distributed Sys-
tems”, in Proc. of ACM symposium on Principles of distributed comput-
ing, 1991

[9] A. Rowe, R. Mangharam and R. Rajkumar, “FireFly: A
Time Synchronized Real-Time Sensor Networking Platform”,
http://nanork.org/attachments/148/nrk-chapter06.pdf

[10] B. Regula, “Formation control of a large group of UAVs with safe path
planning”, in Proc. of IEEE Mediterranean Conference on Control and
Automation, 2013.

[11] S. Natarajan and A. Ganz, “SURGNET: An Integrated Surgical Data
Transmission System for Telesurgery”, in International Journal of
Telemedicine and Applications, Article ID 435849, 2009

[12] J. C. Corbett et al., “Spanner: Google’s globally distributed database”,
in ACM Transactions on Computer Systems (TOCS), vol. 31, no. 3, 2013

[13] M. Lipinski, T. Wostowski, J. Serrano, and P. Alvarez, “White rabbit: A
PTP application for robust sub-nanosecond synchronization”, in Proc. of
Intl. IEEE Symposium on Precision Clock Synchronization for Measure-
ment Control and Communication (ISPCS), 2011

[14] D. L. Mills, “Internet Time Synchronization: The Network Time Proto-
col,” in IEEE Transactions on Communication, vol. 39, no. 10, 1991.

[15] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl, “IEEE 1588-standard for
a precision clock synchronization protocol for networked measurement
and control systems”, in IEEE Instrumentation and Measurement Society
Standard, 2005

[16] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch, “Virtualize
everything but time”, in Proc. of OSDI, 2010

[17] J. Smith and R. Nair, “The Architecture of Virtual Machines”, in IEEE
Transactions on Computers, vol. 38-5, 2005

[18] Docker Containerization Platform, https://www.docker.com/
[19] H. Kim, S. Wang, and R. Rajkumar, “Responsive and Enforced Interrupt

Handling for Real-Time System Virtualization”, in Proc. of IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2015.

[20] P. Barham et. al, “Xen and the Art of Virtualization”, in Proc. of SOSP,
2003

[21] The Xen Project, https://www.xenproject.org/

[22] Intel VT, https://www.intel.com/content/www/us/en/virtualization/virtual
ization-technology/intel-virtualization-technology.html

[23] AMD Virtualization Solutions for Data Centers, http://www.amd.com/en-
gb/solutions/servers/virtualization

[24] J. Ridoux and D. Veitch, “TSCclock Goes Live. A demonstration of a
robust, accurate replacement to ntpd”, in Proc. of ACM SIGCOMM, 2008

[25] KVM Paravirtual Clock, http://www.linux-kvm.org/page/KVMClock
[26] Intel 64 and IA-32 Architectures Software Developer's Manual,

https://www.intel.com/content/dam/www/public/us/en/documents/manuals
/64-ia-32-architectures-software-developer-vol-2b-manual.pdf

[27] VirtIO-Serial, https://fedoraproject.org/wiki/Features/VirtioSerial
[28] C. Macdonell, “Inter-VM shared memory PCI device”,

https://lwn.net/Articles/380869/
[29] J. Gertler, “Analytical Redundancy Methods in Fault Detection and

Isolation”, in Preprints of IFAC/IMACS Symposium on Fault Detection,
Supervision and Safety for Technical Processes, 1991

[30] A. Agostini, C. Torras, and F. Worgotter, “Integrating Task Planning
and Interactive Learning for Robots to Work in Human Environments”,
in Proc. of International Joint Conference on Artificial Intelligence, 2011

[31] Y. Li, J. Sun, J. Dong, Y. Liu and J. Sun, “Planning as Model Checking
Tasks”, in Proc. of the 35th Annual IEEE Software Engineering Workshop,
2012

[32] T. Schouwenaars, E. Feron, and J. How, “Safe Receding Horizon Path
Planning for Autonomous Vehicles”, in Proc. of the Annual Allerton
Conference on Communication Control and Computing, 2002.

[33] Universal Robotics UR-5, https://www.universal-robots.com/
[34] Kuka Robotics, https://www.kuka.com
[35] Beaglebone Black, https://beagleboard.org/black
[36] ROS Indigo Igloo, http://wiki.ros.org/indigo
[37] Gazebo Robot Simulation, http://gazebosim.org/
[38] ROS Control, http://wiki.ros.org/ros control
[39] Intel Gigabit CT Adapter, https://www.intel.com/content/www/us/en/p

roducts/network-io/ethernet/gigabit-adapters/ct-desktop.html
[40] Moxa EtherDevice Switch EDS-405A-PTP, https://www.moxa.com/pro

duct/EDS-405A-PTP.htm
[41] Endace DAG 7.5G2, https://www.endace.com/dag-7.5g2-datasheet.pdf
[42] Linux Kernel Packet Timestamping, https://www.kernel.org/doc/Doc

umentation/networking/timestamping.txt
[43] The Linux PTP Project, http://linuxptp.sourceforge.net/
[44] Ubuntu stress tool, http://manpages.ubuntu.com/manpages/xenial/man1

/stress.1.html
[45] iperf: The TCP, UDP and SCTP network measurement tool,

https://iperf.fr/

