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Abstract—Cyber-physical systems such as autonomous vehicles
need to process and analyze multiple simultaneous streams
of sensor data in real-time. Therefore, these systems require
powerful multi-core platforms with hardware accelerators such
as GP-GPUs. These accelerators generally consume significant
amounts of power. Therefore, power management is required
to ensure that task deadlines are met while staying within the
energy and thermal constraints of the system. In these systems,
most tasks execute using a combination of CPU and accelerator
resources. Hence, the power of the CPU and the accelerator
needs to be managed in tandem. To reduce energy consumption,
commercially-available accelerators such as GP-GPUs and DSPs
expose interfaces to scale their operating voltage and frequency.
Hence, we propose the CycleTandem static frequency-scaling
technique to co-optimize the operating frequencies of both the
CPU and the hardware accelerator. Based on practical consid-
erations of real-world platforms, we consider various energy-
management scenarios where the accelerator or CPU frequencies
may or may not be adjustable, and propose the CycleSolo family
of algorithms for such contexts. Furthermore, we also study
partitioning techniques to reduce the operating frequency when
multi-core processors are used in conjunction with hardware
accelerators. Experimental evaluations indicate that our proposed
techniques can yield significant energy savings. We also present a
case-study on the NVIDIA TX2 embedded platform to illustrate
the energy savings delivered by our proposed techniques.

I. INTRODUCTION

Modern-day real-time systems combine high-computational
demand with low-latency requirements. This is primarily
driven by the emergence of application domains such as
autonomous vehicles [1] and robotics, where multiple simulta-
neous streams of sensor data need to be processed in real-time
to ensure that safety constraints are met. Analyzing this data
relies on techniques ranging from signal processing, computer
vision to machine learning. These workloads are compute
intensive and highly parallel. Therefore, it is becoming increas-
ingly common to find hardware accelerators such as General-
Purpose Graphics Processing Units (GP-GPUs), Digital Signal
Processors (DSPs), and Application-Specific ICs (ASICs) in
the computing platforms used in such systems [2].

Hardware accelerators often consume significant amounts
of power [3]. In addition, energy-constrained platforms such
as smartphones, drones, robots and AR/VR headsets also
contain one or more hardware accelerators [4][5][6]. Hence,
it is necessary to focus on energy management for systems
using hardware accelerators. Thermal constraints also make it
necessary to reduce power consumption to avoid unexpected
system shutdown or prevent bodily harm to the user [7].

To reduce energy consumption, processors are equipped
with energy-management features such as Dynamic Voltage
and Frequency Scaling (DVFS) [8], and the use of low-power

sleep states. By using DVFS the processor can change its
operating frequency and voltage, thereby reducing dynamic-
switching power. On the other hand, low-power sleep states
utilize power gating and/or clock gating [9] to reduce static-
leakage power when the processor is idle. Multi-core proces-
sors generally expose these energy-management features in
the form of P-states, which can be used to set the processor
voltage and frequency; and C-states, which can be used to
power and/or clock gate sections of the processor.

Hardware accelerators can also expose similar power-
management interfaces. However, in commercial accelerators
like GP-GPUs and DSPs, only P-states are exposed to the
user [10][11]. Thus, in effect, they expose only voltage and
frequency-scaling knobs for power management, and the job
of reducing static power is done in firmware or hardware.
Therefore, we focus on using frequency-scaling-based tech-
niques to reduce the power consumption of systems using
hardware accelerators. In particular, we propose techniques to
statically set the processor and accelerator to a pre-computed
taskset-specific frequency, such that the aggregate energy
consumption is reduced, while ensuring that all deadlines are
met. Therefore, as there are no dynamic frequency changes,
the unpredictable latency involved in changing the oscillator
frequency is avoided, leading to more deterministic operation.

The primary contributions of this paper are as follows:

● We introduce a novel search technique called ratchet
search, and use it to jointly estimate the upper and lower
bounds of the range containing the lowest feasible fre-
quency, as additional tasks and resources are considered

● We propose the CycleSolo family of algorithms to cal-
culate the energy-optimal frequency-scaling factor, when
(i) the frequency of only the CPU or the accelerator can
be scaled, or (ii) both the CPU and accelerator frequency
must be scaled by the same common factor.

● We propose the CycleTandem algorithm to calculate low-
power frequency-scaling factors for the CPU and the
accelerator, when both the CPU and accelerator frequency
can be independently scaled.

● We extend the CycleSolo and CycleTandem algorithms to
the fully-partitioned multi-core context.

The rest of the paper is organized as follows. Section II dis-
cusses prior work. Section III provides the system model used
in the paper. Section IV introduces the CycleSolo family of
algorithms, and Section V discusses CycleTandem. Section VI
extends CycleTandem and CycleSolo to the fully-partitioned
multi-core context. Section VII provides experimental evalua-
tions, and Section VIII concludes the paper.



II. RELATED WORK

In this section, we first summarize the techniques proposed
in literature to arbitrate access to hardware accelerators like
GP-GPUs. Subsequently, we discuss the various real-time
energy-saving scheduling techniques proposed in prior work.

Most commercially-available accelerators like GP-GPUs
and DSPs do not typically support preemption. The large num-
ber of registers in these accelerators makes context switching
an expensive proposition. Therefore, prior work [2][12] has
focused on modeling accelerator access as a critical section
arbitrated by a global lock. In particular, the work in [13][14]
models GPUs as mutually-exclusive resources, whose access
is governed by existing real-time synchronization protocols.
The same authors also proposed GPUSync [12], which is a
software framework for GPU management in multi-core real-
time systems. Based on this synchronization-based approach,
[2] extends the analysis proposed in [13][15][16][17], to
propose a less pessimistic response-time analysis framework
to decide the schedulability of tasksets which may use one
or more accelerators. This analysis assumes the use of the
Multiprocessor Priority Ceiling Protocol (MPCP) [15], while
incorporating the effect of self suspensions [16][18].

In [19], Kim et al. propose the server-based approach, where
a server task is created to access the GPU on behalf of the
client applications. However, in this work, we focus on the
synchronization-based approach.

In the context of real-time systems, a number of approaches
have been proposed to reduce energy. In particular, the use
of frequency-scaling-based techniques have been well-studied
[20][21][22][23]. For fixed-priority uniprocessor scheduling,
Saewong et al. [20] proposed the SysClock algorithm to analyt-
ically determine the lowest CPU frequency that allows all tasks
to meet their deadlines. In [24], the authors extend SysClock
to fully-partitioned multi-core processors which have a single
frequency domain. In [21][22][23], frequency-scaling-based
techniques for multi-core processors are proposed, where each
core has its own power domain. However, none of the existing
techniques in the literature consider the case where some task
sections can be executed on a hardware accelerator.

At CMOS technology nodes smaller than 65nm [25], static-
power dissipation is comparable to dynamic-power consump-
tion. Thus, a priori task information can be utilized to cluster
task execution so as to maximize the time spent in a low-power
state [26][27][28][29][30]. The work in [29][30][7] introduced
the family of Energy-Saving Schedulers, which utilize the
processor deep-sleep state to maximize energy savings for both
unicore and multi-core processors. However, most accelerators
do not provide user-configurable sleep states. Thus, sleep-
state-based techniques cannot be used in their context.

Apart from software-based approaches, the work in [31]
proposes a hardware-based approach called MERLOT for
GPU energy management in the context of real-time systems.
MERLOT exploits the fact that, in the general case, most
GPU kernels do not execute up to their worst-case execution
time. In such situations, the slack can be dynamically used

to reduce the voltage and frequency of the GPU. However,
MERLOT considers individual job deadlines, and does not
consider taskset schedulability, or the fact that most tasks
execute using a combination of CPU and GPU segments.

III. BACKGROUND AND SYSTEM MODEL

In this section, we present the assumptions and system
model used in this paper. We also provide some background
about the synchronization-based approach used to govern ac-
cess to hardware accelerators [12], along with its suspension-
based schedulability analysis introduced in prior work [2].

A. Assumptions and Task Model

Consider a taskset Γ consisting of n sporadic real-time tasks
τ1, τ2, ..., τn. The taskset is deployed on an m-core homoge-
neous multi-core processor M , with a single non-preemptive
hardware accelerator A. This assumption is reasonable as most
existing accelerators, including GP-GPUs and DSPs, do not
support preemption [2]. We model the accelerator as a shared
resource, and assume that access to the accelerator is treated as
a critical section arbitrated by a global lock, L [12]. We also
assume that, at any point of time, only a single task can utilize
the accelerator. This avoids any unpredictability in execution
time caused by accelerators which support concurrent execu-
tion [2]. Additionally, accelerators used in energy-constrained
platforms may not support concurrent execution.

Based on the above assumptions, each task τi ∈ Γ can be
characterized by {Ci,Gi, Ti,Di}, where Ci is the worst-case
execution time (WCET) on the CPU, Gi is the WCET on the
accelerator, Ti is the period or minimum job inter-arrival time
(sporadic tasks), and Di is the relative deadline from the arrival
time. The term Gi consists of: (i) Gei , the WCET of the task on
the accelerator, and (ii) Gmi , the worst-case CPU-intervention
required to access the accelerator. Note that, Gi ≤ Gei +G

m
i ,

as Gei and Gmi may not occur on the same control path [2].
However, we assume that Gi = Gei +G

m
i . Therefore, for each

task τi we define the total CPU time required as Ei = Ci+Gmi .
We also assume that each task can access the accelerator
at most once every period. This assumption is reasonable
since in practice, most tasks have a single accelerator-executed
segment. Tasks which have multiple accelerator segments,
can be split into separate tasks. We also assume that, while
accessing the accelerator, each task suspends on the CPU.

In this paper, we consider fully-partitioned fixed-priority
preemptive scheduling and assume deadlines are constrained,
i.e., Di ≤ Ti. Task priorities are assumed to be unique with
each task τi assigned the priority πi. The taskset is listed in
decreasing order of task priorities, i.e., π1 > π2 > ... > πn.

MPCP-based Analysis: In the context of this work, we
utilize the Multiprocessor Priority Ceiling Protocol (MPCP)
[15] to govern access to the global lock L used to access the
accelerator [2]. We consider the version of MPCP, where a task
requesting access to a critical section locked by another task is
suspended and inserted into a lock-specific priority queue [2].
When a task releases a lock, the task at the head of the priority
queue is scheduled, and granted access to the critical section.



In doing so, the priority of the task is raised to the lock’s
priority ceiling. The priority ceiling of the critical section of
task τi accessing lock L, is given by πi = πk +πB , where πB
is a priority level greater than the base priority of any task in
the system and πk is the highest base priority of any task that
uses L. On completion of the critical section, τi releases the
lock, and its priority is returned to its original base priority.

To determine taskset schedulability, we use response-time-
based analysis. Based on this technique, the worst-case re-
sponse time for a task τi is given by the following recurrence:

W 0
i = Ci +Gi +Bi,W

k+1
i = Ci +Gi +Bi +

i−1

∑
h=1

Ii,h (1)

where, Wi is the worst-case response time of the task τi, Bi
provides an upper-bound on the worst-case blocking faced by
τi in getting access to the accelerator, and Ii,h denotes the
worst-case CPU preemption τi faces due to a higher-priority
task τh. If Wi ≤Di, then τi will be schedulable.

The worst-case preemption Ii,h, faced by task τi due to a
higher-priority task τh can be given by:

Ii,h = αi,h ∗Eh, αi,h = ⌈(Wi +Wh −Eh)/Th⌉ (2)

where, αi,h represents an upper bound on the number of
jobs of τh released during a single job of τi [2]. Note that,
αi,j considers the jitter, Wh − Eh, introduced by τh’s self-
suspension on the CPU, while accessing the accelerator [18].

The worst-case blocking Bi, faced by a task τi, in accessing
the accelerator can be upper-bounded by multiple approaches
described in prior work [2][13][17]. Three such approaches
are (i) the job-driven analysis, (ii) the request-driven anal-
ysis, and (iii) the hybrid analysis. Neither of the first two
analyses strictly dominates the other. In practice, the work
in [2] observed that the job-driven analysis dominates the
request-driven analysis when the number of critical sections
a task executes on the accelerator increases. On the other
hand, as Ci and Wi increase the job-driven analysis becomes
more pessimistic. The hybrid analysis proposed in [2] uses a
combination of the job-driven and request-driven analysis to
provide a less-pessimistic worst-case response-time estimate.

In Section III-A, we assumed that each task has only one
critical section which is executed on the accelerator. Under
this assumption, we can easily prove the following theorem.

Theorem 1: If all tasks in Γ have at most one critical section
executed on the accelerator, then the request-driven analysis
always dominates the job-driven analysis.

Proof: The proof can be found in the Appendix. ∎

As a corollary, for the above case, it can also be proven
that the request-driven analysis is equivalent to the hybrid
analysis [2]. Therefore, in this work, we utilize the request-
driven analysis. However, the algorithms we propose can easily
be adapted to other analysis techniques.

Based on the request-driven analysis [2][17], the worst-case
blocking Bi, faced by a task τi in accessing the accelerator,
can be upper-bounded by the following recurrence [2]:

B0
i = max

τl∣l>i
(Gl),B

k+1
i = max

τl∣l>i
(Gl) +

i−1

∑
h=1

βi,h ∗Gh (3)

where, βi,h = ⌈(Bi+Wh−Eh)/Th⌉ upper bounds the number of
accelerator requests made by a higher-priority task τh, while τi
is being blocked. Note that, βi,h considers the self-suspension
of a task on the CPU, while accessing the accelerator.

B. Power Model

The power consumption of modern CMOS-based processors
is modeled as a combination of two major components:

(1) Dynamic Power is dependent on the processor operating
frequency. Assuming that voltage is scaled with frequency,
dynamic power consumption, PD, can be modeled as a convex
function of the operating frequency s as [25]: PD = Kfα

where, α and K are technology-dependent system constants.
(2) Static Power is due to leakage current, which depends

on the semiconductor technology. Static power, PS , can be
modeled as [25]: PS = V Ileak where, V is the operating
voltage and Ileak is the technology-dependent leakage current.

Hence, power consumption P = PD + PS . Therefore, the
total power consumed by the CPU-accelerator combination can
be given by Ptotal = Pcpu+Pacc, where Pcpu and Pacc are the
power consumption of the CPU and accelerator respectively.

As stated in Section I, while dynamic power is reduced
using voltage and frequency scaling, static power is reduced
using sleep states. However, as mentioned earlier, most ac-
celerators do not provide user-configurable sleep states to
reduce static power [32], and rely on firmware-based control to
reduce static power. Therefore, we focus on using frequency-
scaling-based power management, and assume that the pro-
cessor/accelerator performs its own optimizations in parallel
to reduce static power. In particular, we focus on statically
choosing a single operating frequency for the CPU/accelerator.
This is based on the well-known property that, for processors
with a non-decreasing convex power-frequency function, the
energy is minimized if the processor executes its workload at
the lowest-possible constant frequency [20].

For the sake of simplicity, we assume a continuous proces-
sor/accelerator frequency range normalized to the range [0,1].
In later sections, we discuss how discrete frequencies can be
accommodated. We also assume that task worst-case execu-
tion times (WCET) are specified at the maximum frequency,
fmax = 1, and the WCET is scaled in proportion to the operat-
ing frequency f , i.e, WCETf =WCETfmax/f . However, our
proposed algorithms are independent of this scaling model, and
any model where the execution-time monotonically-increases
with decreasing frequency can be used.

IV. CYCLESOLO ALGORITHM

We now introduce the CycleSolo family of algorithms for
uniprocessor systems with a single hardware accelerator. We
propose three variants of CycleSolo:

1) CycleSolo-CPU: when the accelerator does not support
frequency scaling, and only the CPU frequency can be scaled.

2) CycleSolo-Accel: when the accelerator supports fre-
quency scaling, but the CPU frequency cannot be scaled.

3) CycleSolo-ID: when both the accelerator and the CPU
frequencies must be scaled by a common scaling factor.



The two steps of the CycleSolo family of algorithms are as
follows: 1) Compute a tight bound on the frequency range
in which the optimal frequency lies. 2) Perform a binary
search testing schedulability over the computed frequency
range, to obtain the lowest-possible CPU/accelerator operating
frequency which ensures that all deadlines are met.

We can easily prove that given a schedulability-analysis
technique, a binary search (Algorithm 4 in the Appendix) will
always converge to the lowest-possible operating frequency.

Lemma 1: Given a taskset Γ, and a response-time-based
schedulability-analysis technique S, a binary search testing
schedulability over the operating frequency range, converges
to the lowest-possible operating frequency fmin, which guar-
antees that Γ is schedulable using technique S.

Proof: Consider an operating frequency 0 < f ≤ fmax.
For every task τi, the worst-case execution time is inversely
proportional to the frequency. Therefore, the response time of
a task also increases monotonically as the frequency decreases.
Thus, we can conclude that the taskset will be schedulable for
all frequencies f ′ ≥ f , if and only if the taskset is schedulable
at frequency f , using technique S. Conversely, if a taskset is
not schedulable at frequency f , it will not be schedulable for
all frequencies f ′ ≤ f . Given that Γ transitions from schedu-
lable to unschedulable after frequency fmin, the estimated
frequency range decreases with each iteration of the binary
search (Algorithm 4), and given sufficient iterations converges
to fc = fmin, which is the lowest frequency guaranteeing Γ is
schedulable according to analysis technique S. ∎

However, performing the response-time-based schedula-
bility test multiple times over the entire frequency range
[0, fmax] is not desirable, as the response-time-based analysis
has pseudo-polynomial complexity. Therefore, we now explain
how CycleSolo computes a tight bound on the range in which
the optimal frequency lies, by proving various results in the
context of CycleSolo-CPU. However, the same results can be
easily extended to the entire CycleSolo family of algorithms.

CycleSolo-CPU: Consider a uniprocessor with a non-
preemptive accelerator, whose frequency is not adjustable.
Therefore, to minimize energy, we need to find the lowest CPU
operating frequency at which all tasks meet their deadlines.

In [20], the SysClock algorithm was proposed for indepen-
dent sporadic tasks using fixed-priority uniprocessor schedul-
ing. SysClock calculates the lowest processor frequency at
which all tasks meet their deadlines. For each task τi,
SysClock calculates the slack at all scheduling points in the
critical zone [33] to determine the minimum frequency, fi, at
which τi meets its deadline, in the presence of high-priority
interference. SysClock finally chooses the lowest frequency
fmin, as the maximum of these per-task minimum frequencies,
i.e., fmin = maxi∣τi∈Γ fi. Thus, SysClock chooses the lowest
frequency at which all tasks meet their deadlines.

In this work, we use the slack-calculation methodology from
SysClock. However, unlike SysClock, the following issues are
encountered while estimating the minimum frequency:

1) Undefined Critical Instant: In the presence of blocking
and self suspensions, the critical instant does not occur when

all high-priority jobs arrive together with the task τi, and is
undefined [18]. Therefore, extra blocking and self-suspension
terms are added to utilize the existing response-time analysis.
In effect, this assumes the same critical instant, but adds
extra pessimism by considering the worst-case blocking and
modeling the self-suspensions as release jitter [18]. Therefore,
like SysClock, the CycleSolo algorithms consider the critical-
zone theorem [33] where, in the worst case, the requests
of all tasks arrive simultaneously. In practice, the worst-
case blocking, interference and self-suspension penalties never
appear together. Due to this pessimism, all the known analysis
techniques are safe, but none of them are exact [2]. This
prevents us from finding the absolute minimum frequency.
Instead, we can obtain the minimum frequency which allows
a taskset to be schedulable given the analysis framework used.

2) Frequency-Dependent Slack: Due to self suspensions,
the interference and blocking faced by each low-priority task
depends on the response time and worst-case execution time of
higher-priority tasks. However, the worst-case response time of
higher-priority tasks depends on the operating frequency. Thus,
different operating frequencies create different amounts of
high-priority interference and blocking, which makes the slack
calculation frequency-dependent. In SysClock, it is sufficient
to calculate the slack at each scheduling point, i.e., a task’s
deadline or points in time when a new job of a task is
released. However, in the presence of self-suspending tasks,
the pessimism added to the response-time analysis changes
the effective points in time at which new instances of tasks
appear, and makes them dependent on the frequency.

Lemma 2: Consider response-time-based schedulability-
analysis techniques which model self-suspension as release
jitter. Then, for a task τh which self-suspends, the set of
effective scheduling points, i.e., points in time where new
instances of a task effectively arrive are given by:

Sh ∶= {j ∗ Th − (Wh −Eh)∣j > 0} (4)

Proof: The definition of the response-time analysis stated in
Equation 1, calculates the number of jobs, αi,h, of each higher-
priority task τh which interfere with the execution of a low-
priority job τi. For a high-priority task τh, which self-suspends
on the CPU, at each time instant t ∈ Sh, the interference
increases by the execution time of one job of τh. Therefore,
they can be considered as effective scheduling points in the
context of the response-time analysis being used. ∎

Lemma 2 indicates that the interference calculation depends
on the high-priority response time, which depends on the
operating frequency. This dependence does not occur for tasks
which do not self-suspend, as is the case in SysClock, and
prevents us from calculating the lowest frequency in a single
pass over all the tasks. We instead estimate a feasible range
[f low, fhigh] which contains the lowest frequency, fmin.

Algorithm 2 presents the pseudo-code for CycleSolo-CPU,
which considers tasks in decreasing order of their priority.
For each task τi ∈ Γ, CycleSolo-CPU computes a range
[f lowi , fhighi ], which contains the lowest frequency ensuring
that τi and all higher-priority tasks τh∣h<i are schedulable.



Algorithm 1 Calculating the CycleSolo Frequency Bounds
1: procedure RATCHETSEARCH-STEP(fhigh, flow, fest)
2: /*fhigh = upper bound, flow = lower bound*/
3: if fest > fhigh then ▷ check estimate against bounds
4: flow = fhigh; fhigh = fest ▷ Case III
5: elseif fest > flow
6: flow = fest ▷ Case II
7: end if
8: return flow, fhigh ▷ chosen frequency range
9: end procedure

Consider a task τi ∈ Γ. Let us assume that the range
[f lowi−1 , f

high
i−1 ] has already been computed, and is known.

To calculate the minimum frequency at which τi and all
higher-priority tasks are schedulable, we need to estimate the
available slack in the schedule. Based on Lemma 2, for a
task τi, the workload βti changes at every scheduling point
t ∈ {Sh ∣ h < i, t ≤ Di} ∪ Di. Therefore, CycleSolo-CPU
determines the CPU workload βti , that exists in the system
up to each scheduling point t. However, for CycleSolo-CPU,
the scheduling points depend on the frequency at which the
high-priority workload is run. In particular, as the frequency
decreases, the response time of high-priority tasks Wh∣h<i, is
monotonically non-decreasing. Thus, the estimated workload
βti also depends on the frequency fh chosen for the higher-
priority tasks, and is monotonically non-decreasing as the
frequency fh decreases. Assuming we choose a frequency fh,
CycleSolo-CPU’s slack calculation would yield a frequency
festi = mint∈Sh,Di β

t
i/t, where, h < i and t ≤Di.

We need to choose the frequency fh, such that the obtained
festi can provide a safe range [f lowi , fhighi ] containing the
lowest frequency fmini which can ensure that τi and all higher-
priority tasks τh∣h<i are schedulable.

Lemma 3: For a task τi ∈ Γ, choosing the high-priority
frequency fh as fhighi−1 , yields a correct range [f lowi , fhighi ] in
which lies the lowest frequency fmini guaranteeing that τi and
all higher-priority tasks are schedulable using analysis S.

Proof: Let us choose fh = f
high
i−1 − δ, where δ ∈ (0+, fhighi−1 −

f lowi−1 ]. Now, in the worst case, the minimum frequency re-
quired to schedule only the higher-priority tasks τh∣h<i can
be fmini−1 > fh. Therefore, at frequency fh, at least one of
the higher-priority tasks τh∣h<i will miss their deadlines. As
the slack calculation used to estimate festi uses the higher-
priority worst-case response time Wh, this deadline violation
will lead to an incorrect estimate of festi . Therefore, there is
a contradiction. Thus, δ = 0, which implies fh = f

high
i−1 . ∎

Ratchet Search: A “ratchet search” is an incremental
technique that refines earlier estimates based on additional
parameters. Algorithm 1 presents the RatchetSearch-Step rou-
tine, which is a single step of RatchetSearch, in the context of
estimating the bounds of the frequency range [f lowi , fhighi ].

Consider the frequency festi obtained by choosing the high-
priority frequency fh = f

high
i−1 . We can have three scenarios:

Case I. festi < f lowi−1 implies that τh ∈ Γ ∣ h ≤ i will be
schedulable at fh, as the available slack is sufficient to support
an operating frequency festi ≤ fh. Hence, no change is needed

Algorithm 2 Minimizing CPU Frequency
1: procedure CYCLESOLO-CPU(Γ, εconv)
2: flow = fhigh = Ucpu ▷ initial bounds from Lemma 4
3: for τi ∈ Γ do ▷ from high to low priority
4: flow, fhigh = EstimateFreqRange(τi,Γ, fhigh, flow)
5: end for
6: fmin = BinarySearch(Γ, εconv, fhigh, flow)
7: return fmin
8: end procedure
9: procedure ESTIMATEFREQRANGE(τi,Γ, fhigh, flow)

10: fh = fhigh ▷ Lemma 3, fh= high-priority frequency
11: /* S = slack, ω = resp time, β = CPU workload */
12: S = I = β = ∆ = 0, fest = 1, BusyFlag=TRUE
13: W = Calculate-HP-ResponseTime(fh)
14: Bi = CalculateBlocking(τi,Γ, fh,W )
15: ωg = Gi +Bi −Gcpu ▷ Accelerator execution time
16: ω = Ci +Gi +Bi, ω′ = 0, Ji = ω
17: while ω <Di do
18: if BusyFlag == TRUE then
19: ∆ =Di − ω
20: while ω <Di AND ∆ > 0 do
21: ω′ = ∑i−1

h=0Eh ∗ [⌊
ω+Wh−(Eh/fh)

Th
⌋ + 1]

22: ω′ = ω′ + Ji + S, ∆ = ω′ − ω,ω = ω′

23: end while
24: BusyFlag = FALSE
25: else ▷ Start of an idle period
26: t = Find-EarliestSchedulingPoint(τi,Γ, ω)
27: S = S+(t−ω), ω = t, t′ = ω−ωg, β = ω−S−ωg
28: if β/t′ < fest then
29: fest = β/t

′

30: end if
31: BusyFlag = TRUE
32: end if
33: end while
34: flow, fhigh = RatchetSearch-Step(fhigh, flow, fest)
35: return flow, fhigh
36: end procedure
37: procedure CALCULATEBLOCKING(τi,Γ, fh,W )
38: Gl,max = maxτl∈lp(τi)(Gl), B = Gl,max, B′ = 0
39: while B != B′ do
40: B′ = B, B = Gl,max+∑τh∈hp(τi)⌈

B′+Wh−Eh
fh

Th
⌉∗Gh

41: end while
42: return B
43: end procedure

to the existing frequency range, as fmini ∈ [f lowi−1 , f
high
i−1 ].

Case II. festi ∈ [f lowi−1 , f
high
i−1 ]. Of all the frequencies in

the previously-computed feasible range, choosing fh = f
high
i−1 ,

introduces the least-possible high-priority interference. This
creates the maximum-possible slack for τi, and enables festi

to be minimized for the frequencies in the feasible range.
Therefore, the minimum frequency fmini required to schedule
tasks τh ∈ Γ ∣ h ≤ i is always greater than festi . Thus, the lower
bound of the range f lowi can be safely updated to festi .

Case III. festi > fhighi−1 implies that τi is not schedulable at
fh = fhighi−1 . Therefore, the lower bound of the range f lowi



can be safely updated to fh. The previous statement also
implies that task τi would not be schedulable for any frequency
f < fh. Therefore, choosing fh = fhighi−1 also introduces the
maximum-feasible high-priority interference, which minimizes
the available slack and allows festi to be maximized. Thus,
festi is a safe and tight upper bound which guarantees that
tasks τh ∈ Γ ∣ h ≤ i are schedulable. Therefore, the upper
bound of the range fhighi can be safely updated to festi .

However, the RatchetSearch routine requires an initial es-
timate of the upper and lower bounds of the range, f lowinit
and fhighinit , in which the minimum frequency lies. As Ratch-
etSearch always increases or “ratchets up” the value of the
bounds, both bounds can be initialized to f lowinit = f

high
init = 0.

Lemma 4: The lowest-possible CPU frequency, fmin, at
which a taskset Γ is schedulable is always greater than or
equal to Ucpu ∗ fmax, where Ucpu is the CPU utilization of
the taskset at the maximum operating frequency fmax.

Proof: Let the taskset Γ be schedulable at frequency f ′ =
Ucpu∗fmax−ε, for some ε > 0. At this frequency f ′, the CPU
utilization of the taskset will be Ucpu ∗ fmax/f ′ > 1. ∎

Therefore, as an optimization, the initial estimate of the
bounds, f lowinit and fhighinit , containing the minimum frequency
can be set to f lowinit = f

high
init = Ucpu ∗ fmax.

Based on the final frequency range [flow, fhigh] returned
by RatchetSearch, a binary search over the estimated range
converges to the lowest frequency which allows a taskset to
be schedulable, for a given schedulability-analysis technique.

Theorem 2: CycleSolo-CPU converges to the lowest CPU
frequency fmin at which Γ is schedulable using analysis S.

Proof: The proof follows from Lemmas 1, 2, 3 and 4. ∎

The time-complexity of ratchet search is linear in the
number of tasks. The CycleSolo slack-calculation step has
pseudo-polynomial complexity due to the response-time test.

Example: Consider a taskset Γ, with two implicit-deadline
tasks τ1 = (C1=10, G1=8, T1=50), and τ2 = (C2=20, G2=5,
T2=80). For this example, assume that the CPU intervention
required for accelerator access Gm = 0. To determine schedu-
lability we consider the request-driven analysis. The initial
range estimates, f lowinit and fhighinit , are set to the CPU utilization
0.45. For τ1, the only effective scheduling point to consider is
t = 50, which is τ1’s deadline. By calculating the CPU execu-
tion and slack up to time t = 50, we obtain the minimum CPU
frequency estimate fest1 = C1/(50−G1−G2) = 0.27. However,
as fest1 < f lowinit (Case I of RatchetSearch) the bounds are not
updated. Subsequently, we need to determine the lowest fre-
quency fest2 , which ensures τ2 is schedulable in the presence of
interference from τ1, running at CPU frequency fhigh1 = 0.45
(Lemma 3). From Lemma 2, the effective scheduling points
we need to consider are t = 42, corresponding to an effective
scheduling point of task τ1, and t = 80, corresponding to τ2’s
deadline. However, the request-driven analysis indicates that
there is no slack up to t′ = 53. Hence, we only need to consider
t = 80. Computing the CPU execution and slack up to t = 80
yields fest2 = (2 ∗ C1 + C2)/(80 − G1 − G2) = 0.597. As
fest2 > fhigh1 , the upper bound is updated to fhigh2 = 0.597
(Case III of RatchetSearch), and the lower bound f low2 is set

to fhigh1 = 0.45. Therefore, the final CPU frequency range is
[f low2 = 0.45, fhigh2 = 0.597]. Performing a binary search over
this range yields the minimum CPU frequency fmin = 0.597,
ensuring schedulability using the request-driven analysis.

CycleSolo-Accel: Consider a uniprocessor whose frequency
is not adjustable, with a single accelerator which supports
frequency scaling. To minimize energy, we need to find the
lowest-possible accelerator frequency at which all tasks meet
their deadlines. In practice, such a scenario rarely exists, but
CycleSolo-Accel helps bootstrap our CycleTandem algorithm.

Algorithm 5 in the Appendix presents the pseudo-code for
CycleSolo-Accel, which considers tasks in decreasing priority
order. For each task τi ∈ Γ, CycleSolo-Accel uses Ratchet-
Search to compute the range [f lowi , fhighi ], which contains
the lowest accelerator frequency which ensures that tasks
τh ∈ Γ ∣ h ≤ i are schedulable. CycleSolo-Accel is identical
to CycleSolo-CPU, except that it (i) calculates the frequency
using the accelerator workload in the critical zone, and (ii)
only performs the frequency-range estimation for tasks with
accelerator segments. Thus, the results proved for CycleSolo-
CPU also hold in the context of CycleSolo-Accel.

CycleSolo-ID: Consider a uniprocessor coupled with a
single non-preemptive accelerator, where their operating fre-
quencies can only be scaled by the same factor. To minimize
energy we need to find the lowest-possible identical frequency-
scaling factor at which all tasks meet their deadlines. In
practice, this scenario may exist when a CPU is combined with
an on-chip accelerator, and both share the same oscillator.

Algorithm 6 in the Appendix presents the pseudo-code
for CycleSolo-ID, which considers tasks in decreasing order
of their priority. For each task τi ∈ Γ, CycleSolo-ID uses
RatchetSearch to compute the range [f lowi , fhighi ], which
contains the lowest common frequency-scaling factor which
can ensure that tasks τh ∈ Γ ∣ h ≤ i are schedulable. CycleSolo-
ID is identical to CycleSolo-CPU, except that it calculates the
frequency using both the CPU and accelerator workload in the
critical zone. Thus, all the results proved for CycleSolo-CPU
also hold in the context of CycleSolo-ID.

Like SysClock, in theory, the CycleSolo algorithms can
also use a per-task binary search to converge to the minimum
frequency fi, which ensures that a task τi is schedulable in the
presence of high-priority interference. This approach would
entail multiple calls to the pseudo-polynomial response-time-
analysis. Therefore, for n tasks and an operating frequency
range fop, the per-task-binary-search has n∗ log(fop) pseudo-
polynomial complexity. However, the ratchet-search-based-
technique has n + log(frs) pseudo-polynomial complexity,
where frs < fop is the range returned by RatchetSearch.

V. CYCLETANDEM ALGORITHM

Consider a uniprocessor coupled with a single non-
preemptive accelerator, where the CPU and accelerator op-
erating frequencies can be set independently. Therefore, to
minimize the energy consumption of the system, the CPU and
accelerator frequencies need to be optimized in tandem.



Algorithm 3 CycleTandem Algorithm
1: procedure CYCLETANDEM(Γ, εconv)
2: fsolocpu = CycleSolo-CPU(Γ, εconv)
3: fsoloacc = CycleSolo-Accel(Γ, εconv)
4: fupcpu, f

up
acc = ComputeRange(Γ, fsolocpu , f

solo
acc , εconv)

5: if fupcpu − fsolocpu < fupacc − f
solo
acc then

6: fcpu, facc = SearchRange-CPU(Γ, fupcpu, f
solo
cpu )

7: else
8: fcpu, facc = SearchRange-Acc(Γ, fupcpu, f

solo
cpu )

9: end if
10: return fcpu, facc
11: end procedure

Though the CPU and accelerator frequencies can be set
independently, the taskset-schedulability constraint introduces
a dependency between the CPU and accelerator frequencies.
We now prove the “See-Saw Theorem” which shows the
relationship between the CPU and accelerator frequencies.

Theorem 3: For a taskset Γ to be schedulable according to
analysis S, both the CPU frequency fcpu and the accelerator
frequency facc cannot be less than the minimum common
frequency, fsoloid , determined by CycleSolo-ID.

Proof: Suppose Γ is schedulable by S, when both the CPU
and accelerator frequencies fcpu, facc < fsoloid . Therefore, Γ
will be schedulable if both the accelerator and CPU frequen-
cies are set to fid =max(fcpu, facc) < fsoloid . However, given
an analysis technique S, CycleSolo-ID returns the minimum
common frequency, fsoloid . Thus, there is a contradiction. ∎

We now see that there is a see-saw relationship between
facc and fcpu. If one is reduced to be less than fsoloid , the
other will increase and always be greater than or equal to
fsoloid . Thus, we can also conclude that facc is monotonically
non-increasing with fcpu, and vice-versa. Therefore, given an
analysis technique, for every feasible CPU frequency fcpu,
there exists a unique minimum accelerator frequency, facc,
which guarantees schedulability. This accelerator frequency
can be found by scaling the taskset to the CPU frequency,
and then computing the corresponding minimum accelerator
frequency using CycleSolo-Accel. Similarly, for every feasi-
ble accelerator frequency facc, CycleSolo-CPU can find the
minimum CPU frequency, fcpu, guaranteeing schedulability.

It is trivial to show that, for a fixed CPU (accelerator)
frequency, the minimum corresponding accelerator (CPU) fre-
quency minimizes energy. Therefore, given the one-to-one see-
saw relationship between the CPU and accelerator frequencies,
it is sufficient to find the optimal accelerator frequency in
order to compute the optimal CPU frequency, and vice versa.
Thus, an exhaustive search in the range of feasible accelerator
frequencies will yield the optimal frequency pair (foptcpu, f

opt
acc).

Theorem 4: The energy-optimal accelerator frequency foptacc

always lies in [fsoloacc , f
up
acc], where fsoloacc is the frequency re-

turned by CycleSolo-Accel, and fupacc is the minimum feasible
accelerator frequency guaranteeing schedulability, when the
CPU is set to the CycleSolo-CPU frequency fsolocpu .

Proof: If we set the CPU frequency to be fsolocpu , there may
be some slack in the system which can be utilized to reduce

the accelerator frequency below its maxima. As fsolocpu is the
lowest feasible CPU frequency (Theorem 2), the correspond-
ing accelerator frequency fupacc, can safely upper-bound the
range which contains the optimal accelerator frequency, as any
frequency above fupacc will not be energy-efficient. Additionally,
CycleSolo-Accel yields the lowest feasible accelerator fre-
quency fsoloacc (corollary of Theorem 2). Therefore, the optimal
accelerator frequency foptacc must lie in [fsoloacc , f

up
acc]. ∎

As a corollary, if we choose the accelerator frequency to
be fsoloacc , we obtain the CPU frequency fupcpu. Therefore, the
optimal CPU frequency foptcpu will lie in [fsolocpu , f

up
cpu].

For CycleSolo, assuming a convex energy function, the
energy consumption is minimized at the minimum feasible
frequency, which is independent of the power-model parame-
ters. However, for CycleTandem, the energy-optimal frequency
pair depends on the power-model parameters, due to the non-
linear see-saw schedulability-analysis-dependent relationship
between the accelerator and CPU frequencies which renders
the energy function non-convex. This non-linearity is caused
by an effect we refer to as slack-squeezing. Given some usable
slack, the frequency of the CPU (accelerator) depends on the
effective utilization of the CPU (accelerator) up to a scheduling
point. Therefore, a δ > 0 increase in the CPU (accelerator)
frequency can cause a δ′ > δ decrease in the corresponding
accelerator (CPU) frequency. In other words, if δcpu > δacc,
the CPU squeezes the available slack more efficiently than the
accelerator, and vice versa. The following theorem highlights
the effect of slack squeezing on energy.

Theorem 5: Consider a feasible CPU frequency fcpu ∈

[fsolocpu , fmax), and its corresponding minimum feasible accel-
erator frequency facc. If we increase the CPU frequency by
δ, then the energy consumption decreases if and only if, the
gradient of the accelerator frequency w.r.t the CPU frequency,

∣∇fcpu,facc ∣ = ∣
∂facc
∂fcpu

∣ >
Kcpu ∗Ucpu ∗ f

α−1
cpu

Kacc ∗Uacc ∗ fα−1
acc

(5)

Proof: The proof can be found in the Appendix. ∎

The corollary of the above theorem, corresponding to the
accelerator frequency also holds.

Consider a taskset Γ with CPU and accelerator utilization
Ucpu and Uacc. Let (fcpu, facc) constitute a feasible frequency
pair, ensuring Γ is schedulable. Therefore, based on the energy
model described in Section III-B, the normalized energy
consumption of the system in the hyperperiod is given by
Etotal = Ecpu+Eacc, where Ecpu =Kcpu∗Ucpu∗f

α−1
cpu +E

cpu
static

is the CPU energy, and Eacc =Kacc ∗Uacc ∗ f
α−1
acc +Eaccstatic is

the accelerator energy. Since we have no control on reducing
the static power of the system, we conservatively assume that
it also shares a direct dependency on the operating voltage and
frequency. Thus, both Ecpu and Eacc are indeed convex non-
decreasing functions in fcpu and facc respectively, and their
combination Etotal will also be a convex function in fcpu and
facc. However, if the schedulability constraint is applied, then
due to the see-saw theorem, facc can become a non-linear
non-convex function of fcpu and vice-versa, which in turn
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Fig. 1. (a) Energy and (b) Accelerator Frequency vs CPU Frequency

can render the energy function Etotal non-convex. This non-
convexity unfortunately makes it difficult to find the optimal
frequency-pair which minimizes the total energy consumption.

By looking at the function for Etotal∀(α > 3), it may
seem that if Kcpu ∗ Ucpu > Kacc ∗ Uacc then to minimize
Etotal, fcpu < facc, and vice versa. However, the non-linear
relationship between facc and fcpu causes this statement to
not always hold, except under special conditions.

Theorem 6: If Kcpu∗Ucpu >>Kacc∗Uacc, then the energy-
optimal CPU frequency for taskset Γ approaches fsolocpu .

Proof: In this case, Etotal ≈ Ecpu. As Ecpu is minimized at
fsolocpu , therefore as fcpu → fsolocpu , Etotal is also minimized. ∎

As a corollary, if Kacc∗Uacc >>Kcpu∗Ucpu, then for taskset
Γ the energy-optimal accelerator frequency facc → fsoloacc .
Therefore, the energy-optimal frequency pair depends on (i)
the ratio of the accelerator and CPU utilization, (ii) the
power-model parameters, and (iii) the schedulability-analysis-
dependent see-saw relationship between facc and fcpu.

Example: Consider a taskset Γ consisting of 5
implicit-deadline tasks with their execution parameters
(C,Ge,Gm, T ): {(0.27,15.11,1,84), (24.08,0,0,221),
(37.89,0,0,231), (13.19,0,0,330), (78.44,45.18,1,427)}.
Figure 1 illustrates the relationship of the CPU frequency,
fcpu with the energy consumption (Figure 1(a)) and the
accelerator frequency (Figure 1(b)). In (Figure 1(a)), note the
non-convexity of the energy function and the dependence of
the energy-optimal frequency on the power-model parameters.
Additionally, observe the non-linear relationship between the
accelerator frequency and the CPU frequency (Figure 1(b)).
Notice that, for fcpu ≈ 0.7 to 0.75, the accelerator frequency
drops rapidly due to the slack-squeezing effect.

It appears that the energy-optimal frequency pair cannot be
found analytically, and instead we need to search the feasible
space to find the optimal solution. Of the CPU and accelerator
frequency ranges, the smaller range can be chosen. In theory,
a gradient descent over the feasible range can yield a local
optima. Alternatively, if the range is small, an exhaustive
search with a small step size can quickly yield a good solution.

Algorithm 3 presents the CycleTandem algorithm, which
can utilize any reasonable search technique, SearchRange, in
the feasible range. In our experiments, we use a greedy-search
algorithm which first computes the energy at both ends of the
feasible range. Subsequently, it chooses the endpoint with the
lower energy, and increases/decreases the CPU (accelerator)
frequency in small steps, until the first local minima is reached.

Accommodating Discrete Frequencies: In most systems,

the frequency of the processor (accelerator) can only be set
to discrete values. For CycleSolo, we can compute the mini-
mum frequency, and pick the next-greater discrete frequency.
Alternatively, the binary-search step of CycleSolo, can only
consider the discrete frequencies. If no discrete frequencies lie
in the feasible range, we pick the next-greater frequency than
the upper bound of the range. Similarly, for CycleTandem, we
can search over the discrete frequencies in the feasible range,
and pick the frequency pair yielding the minimum energy.

VI. CYCLESOLO AND CYCLETANDEM IN THE
FULLY-PARTITIONED MULTI-CORE SETTING

We now extend CycleSolo and CycleTandem for fully-
partitioned multi-core processors, coupled with a single accel-
erator. We assume that if the CPU supports frequency scaling,
then all its cores must be set to the same frequency.

Consider a taskset Γ, partitioned among m cores, such that
each core has a subset of tasks Ψj ⊂ Γ ∣ j = 1,2, ..,m. The
context in which each algorithm can be used is as follows:

1) CycleSolo-CPU: all the CPU cores can be set to a com-
mon frequency, and the accelerator frequency is not adjustable.

2) CycleSolo-Accel: the frequency of the CPU cores cannot
be scaled, and the accelerator frequency is adjustable.

3) CycleSolo-ID: all the CPU cores and the accelerator, can
only be set to an identical frequency-scaling factor.

4) CycleTandem: all the CPU cores can be set to a common
frequency, and the accelerator frequency is also adjustable.

Consider the CycleSolo algorithms. The best solution is
still a single lowest frequency. Therefore, Lemma 3 holds,
and we can use the RatchetSearch frequency-range estimation
algorithm. The only differences from the uniprocessor case
are as follows: (i) for each core j, interference is computed
considering only the tasks τi ∈ Ψj , and (ii) remote blocking
by tasks on other cores is taken into account.

Theorem 7: Given a taskset Γ, and its schedulable partition
Ψ onto an m-core processor, then the CycleSolo algorithms
converge to the lowest CPU/accelerator/common frequency
fmin at which partition Ψ is schedulable using analysis S.

Proof: The CycleSolo algorithms compute a single fre-
quency range. Thus, Theorem 2 holds, and a single binary
search, testing schedulability across m cores using analysis
S, over the feasible range returned by RatchetSearch, can
converge to the lowest frequency fmin. ∎

Consider the CycleTandem algorithm. We share a sin-
gle CPU frequency across all cores. Therefore, the see-saw
theorem still holds, and a one to one mapping between
every common CPU and accelerator frequency still exists.
Thus, multi-core CycleTandem can use CycleSolo-CPU and
CycleSolo-Accel to compute a lower bound on the common
CPU frequency fsolocpu , and the accelerator frequency fsoloacc

respectively. Therefore, using fsolocpu and fsoloacc , the safe upper
bounds on the accelerator frequency fupacc, and the common
CPU frequency fupcpu can be calculated. Subsequently, perform-
ing an exhaustive search over the feasible CPU or accelerator
range can yield the energy-optimal frequency pair. Similarly,
we can also use the greedy search proposed for uniprocessors.
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Fig. 2. Energy as a function of (a) CPU Utilization, (b) Accelerator Utilization, (c) % of tasks using the accelerator (d) power-model parameters

Note that, for CycleSolo-CPU and CycleTandem, if each
CPU core can have its own frequency, we cannot perform
a search over a single frequency range. Additionally, due to
self-suspension, the response time of a task on one core, can
depend on the frequency chosen for another core. This is due
to the dependence of a task τi’s response time on the response
time of higher-priority tasks τh ∣ h < i, which may be allocated
to other cores. Hence, more sophisticated search techniques are
required, which are beyond the scope of this work.

Task Partitioning: Load balancing is often used to deter-
mine an energy-efficient partition in multi-core systems [24].
When the CPU frequency is common across all cores, the core
with the highest effective load determines the CPU frequency.
Thus, load balancing is useful as it tries to minimize the
maximum load across cores [24]. Among task-partitioning
heuristics studied in the literature, the Worst-Fit Decreasing
(WFD) algorithm is known to yield a well-balanced partition
[24]. WFD allocates tasks to cores in non-decreasing order of
their utilization. Given a task to be allocated, WFD assigns it
to the core with the least utilization. When WFD can allocate
tasks to use only m cores, it is equivalent to List Scheduling.

However, the blocking and self-suspension penalties in-
troduced by accessing the accelerator affects the frequency
estimation. Therefore, motivated by the work in [34], we
propose a modified version of WFD called Sync-Aware WFD
or SA-WFD, which for a taskset Γ, first computes the fraction
of CPU load belonging to tasks which utilize the accelerator,
γacc = U

acc
cpu/U

total
cpu , and subsequently allocates ψ = ⌈γacc ∗m⌉

cores for these tasks. Finally, our heuristic balances the load
while constraining the tasks using the accelerator to ψ cores.
Thus, restricting the self-suspension penalties to a few cores.

VII. EXPERIMENTAL EVALUATION

We now assess the energy-savings delivered by our pro-
posed CycleSolo and CycleTandem algorithms. We first
present analytical evaluations using the request-driven analysis
[17] and the power model presented in Section III-B. Subse-
quently, we present experiments performed on the NVIDIA
TX2 [35] embedded platform to demonstrate the practical
applicability of our proposed techniques. We assume fully-
partitioned fixed-priority scheduling, with task priorities as-
signed using the Rate-Monotonic policy [36]. To the best of
our knowledge, no other energy-saving real-time scheduling
techniques exist in the context of hardware accelerators. There-
fore, we compare against the case without energy management.

We compare our proposed techniques on the basis of
analytically-computed energy savings over the hyperperiod.
Every data point plotted is an average of 5000 tasksets, ran-
domly generated using the UUniFast-Discard [37] algorithm,
such that no task has a CPU/accelerator utilization greater than
0.4. We consider sporadic tasks with the minimum inter-arrival
time randomly assigned to be between 5 and 500 time units.

Uniprocessor Experiments: Figures 2 (a), (b) and (c),
plot the average normalized energy as we vary (a) the CPU
utilization keeping Uacc = 0.3, (b) the accelerator utilization
keeping Ucpu = 0.4, (c) the fraction of tasks using the
accelerator keeping Ucpu = 0.4 and Uacc = 0.3. The power-
model parameters are set to: Kcpu = 1, Kacc = 2 and
α = 3. Consider Figure 2 (a). As the CPU utilization is
varied, our proposed CycleTandem greedy-search heuristic
returns a solution that in the worst-case consumes 1.53%
greater energy than the brute-force search. Compared to the
case without energy management, i.e., executing all tasks at
the maximum frequency, CycleTandem with the greedy-search
heuristic on average delivers up to 71.88% lower energy con-
sumption. Compared to the case without energy management,
CycleSolo-CPU, CycleSolo-Accel and CycleSolo-ID deliver
up to 27.42%, 63.41% and 71.03% lower energy respectively.
Similar trends can be observed for Figures 2 (b) and (c), where
the CycleTandem greedy-search heuristic yields a result with
near-optimal energy savings. Figure 4 shows the computed
CPU and accelerator frequencies for our proposed techniques.
For all three sub-figures, (4 (a), (b) and (c)) the CycleSolo-
Accel and CycleSolo-CPU frequencies are never greater than
the CycleSolo-ID frequency. For CycleTandem, note the see-
saw relationship between the accelerator and CPU frequencies
around the CycleSolo-ID frequency.

We also performed experiments to determine the impact
of varying the power-model parameters on the CycleTandem
greedy-search heuristic. Figure 2(d) plots the average normal-
ized energy for five sets of power-model parameters. Note
that, when the power-model parameters are varied, the greedy-
search heuristic yields solutions that in the worst-case consume
only up to 12.48% more energy than the brute-force search.

Multicore Experiments: In Section VI, we proved that
given a taskset Γ, and its schedulable partition P onto an
m-core processor, we can find the optimal solution for all the
CycleSolo algorithms. Therefore, we consider m = 4 cores,
and focus on comparing our proposed Sync-Aware WFD (SA-
WFD) heuristic against WFD, in the context of CycleTandem.
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Fig. 3. WFD vs Sync-Aware WFD (SA-WFD) (a) schedulability comparisons, (b) Energy vs CPU utilization, and (c) Energy vs Accelerator utilization
TABLE I

EXPERIMENTAL TASKSETS DEPLOYED ON THE NVIDIA TX2

Taskset (Γ) Tasks Ucpu Uacc Description

Γ1 8 1.75 0.39 High Ucpu, High Uacc

Γ2 4 0.44 0.14 Low Ucpu, High Uacc

Γ3 4 1.94 0.02 High Ucpu, Low Uacc

Γ4 6 0.10 0.52 Low Ucpu, High Uacc

TABLE II
CPU,GPU FREQUENCIES USED ON THE NVIDIA TX2 (MHZ)

Γ CS-CPU CS-Accel CS-ID C-Tandem

Γ1 1728,1135 2032,1033 1881,1033 1728,1135

Γ2 499,1135 2032,319 806,421 499,523

Γ3 1267,1135 2032,115 1267,727 1267,217

Γ4 346,1135 2032,931 1728,931 653,931

Figure 3 (a) compares SA-WFD and WFD on the basis of
schedulability. The CPU utilization is varied while keeping
Uacc = 0.3. Observe that, as the CPU utilization increases,
SA-WFD yields more schedulable partitions than WFD, and
can schedule up to 6.3% more tasksets than WFD. We also
illustrate the utility of our proposed greedy-search heuristic
for CycleTandem. Figures 3 (b) and (c) plot the average
normalized energy for CycleTandem as we vary (b) the CPU
utilization keeping Uacc = 0.3, (c) the accelerator utilization
keeping Ucpu = 1.5. Note that, for both WFD and SA-WFD,
the CycleTandem greedy-search heuristic returns a solution
that in the worst-case consumes 1.38% and 1.42% greater
energy than the brute-force search, respectively. Comparing
the CycleTandem greedy-search heuristic across the two parti-
tioning techniques, indicates that SA-WFD on average yields
a solution with up to 3.3% lower energy consumption than
WFD. Thus, SA-WFD yields better schedulability and energy
savings than WFD, with the same algorithmic complexity.

Experiments on the NVIDIA TX2: We examine the practi-
cal energy savings delivered by our algorithms, by performing
experiments on the TX2 embedded platform [35]. The TX2
contains 4 ARM A57 CPU cores, 2 Denver CPU cores and an
integrated 256-core Pascal GPU [35]. In our experiments we
disable the 2 Denver CPU cores. The ARM cores can be set to
12 discrete frequencies ranging from 345.6 MHz to 2.03 GHz,
and the GPU can be set to 12 discrete frequencies ranging from
114.75 MHz to 1.13 GHz. Note that all 4 ARM cores lie in
the same voltage domain, and can only be set to the same
frequency. However, the GPU lies in a separate power domain
and its frequency can be independently set.

We consider four tasksets Γi∣i=1,2,3,4, described in Tables

TABLE III
POWER MEASUREMENTS ON THE NVIDIA TX2 (MILLIWATTS)

Γ Type No VFS CS-CPU CS-Accel CS-ID C-Tandem

Γ1 Total 1826.91 1435.20 1805.91 1601.79 1425.93
CPU 1338.36 995.07 1363.23 1160.09 985.45
GPU 488.03 440.12 440.12 441.69 440.48

Γ2 Total 906.23 607.38 835.82 537.31 530.12
CPU 607.14 305.06 611.41 312.01 305.59
GPU 299.09 302.32 224.41 225.30 224.53

Γ3 Total 1405.27 797.32 1363.00 784.31 782.74
CPU 1211.90 636.12 1209.90 636.12 629.53
GPU 193.37 161.20 153.10 161.20 153.20

Γ4 Total 632.57 419.61 625.28 539.78 404.65
CPU 469.41 238.95 467.97 381.29 244.86
GPU 163.15 180.65 157.30 158.48 159.78

I and IV. Each taskset consists of matrix-multiplication tasks
accessing the GPU. The length of each task’s CPU and GPU
segments are configurable. An implementation of the MPCP-
based synchronization approach was used to arbitrate GPU
access. Tasks are allocated to cores using Sync-Aware WFD.
For all our proposed techniques we compute the frequency(ies)
using our theoretical model, and then choose the next larger
available CPU/GPU frequency. Our algorithms depend on
the ratio Kcpu/Kgpu. In our calculations the power-model
parameters are set to: Kcpu = 1, Kacc = 1 and α = 3. This
is based on the fact that both the CPU and the GPU lie on
the same chip [35]. We also assume that the task WCET
scales with the frequency. The frequencies we computed for
the different tasksets can be found in Table II.

The energy consumption of each taskset is measured over
multiple hyper-periods by using the on-board INA3221 power
monitors [38]. To compute the energy consumption, we peri-
odically read the monitors, which measure the power drawn
by the 4 ARM cores and the GPU, every 10 ms. The possible
sources of error in our measurement are: (i) the INA3221 has
a measurement accuracy of 0.1%, and (ii) the overhead of
reading the INA3221 on the CPU. However, we believe that
these sources of error are small and do not affect our results.

To get a flavor of the realized energy savings, Γi∣i=1,2,3,4

have differing amounts of CPU and GPU utilization. The
results are described in Table III. Compared to the case without
frequency scaling, CycleTandem (C-Tandem) delivers the most
energy savings, and for taskset Γ3, we observe 44.29% lower
power, which translates to a 1.78x increase in the life of a
battery-powered system. Similarly, when the CPU utilization is
low (Γ2 and Γ4), using CycleSolo-CPU (CS-CPU) yields up to
32% reduction in power. Note that, as we reduce the operating
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Fig. 4. CPU and Accelerator frequency as a function of (a) CPU Utilization, (b) Accelerator Utilization, and (c) Percentage of tasks using the accelerator

Algorithm 4 Binary Search Minimizing Frequency
1: procedure BINARYSEARCH(Γ, εconv, fhigh, flow)
2: while fhigh − flow > εconv do
3: fest = (fhigh + flow)/2 ▷ chosen frequency
4: Γ′ = ScaleTaskset-Frequency(Γ, fest)
5: if Γ′ is Schedulable then fhigh = fest
6: else flow = fest
7: end if
8: end while
9: return fhigh

10: end procedure

frequency, we observe greater reduction in CPU energy as
compared to GPU energy. This is likely because (i) the GPU
energy also depends on the frequency of the GPU memory,
and, (ii) since there are multiple CPU cores, there is more
opportunity to reduce the CPU frequency.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced energy-saving fixed-priority
scheduling techniques for real-time systems with non-
preemptive hardware accelerators. We first proposed the Cy-
cleSolo algorithms for systems where only the CPU or acceler-
ator frequency can be set. CycleSolo utilizes our ratchet search
to compute a tight range containing the lowest frequency, fol-
lowing which a binary search in this range yields the optimal
frequency, for a given schedulability-analysis technique.

We also introduced the CycleTandem algorithm for systems
where the processor and accelerator frequencies can be in-
dependently set. We compute the feasible ranges containing
the energy-optimal CPU and accelerator frequency pair, and
propose a greedy-search heuristic to find a good solution.

Finally, we extend the CycleSolo and CycleTandem algo-
rithms to fully-partitioned multi-core processors, where all the
CPU cores must be set to the same frequency. In this context,
we also propose the Sync-Aware Worst-Fit Decreasing heuris-
tic which yields better schedulability and energy savings, than
Worst-Fit Decreasing. Analytical experiments show that our
proposed techniques can deliver significant energy savings. In
addition, practical experiments on the NVIDIA TX2 indicate
significant energy savings and validate our theoretical findings.

In future work, we will focus on multi-core systems where
the frequency of each processor core can be independently set.
We will also consider systems which contain multiple accel-
erators, or accelerators which support software partitioning.

TABLE IV
NVIDIA TX2 TASKSET PARAMETERS (ms)

Γ Implicit-deadline (D = T ) Task Parameters (C,Ge,Gm,T )

Γ1 (20,4,0.3,100),(10,6,0.3,100),(30,4,0.3,150),(50,18,0.3,200),
(50,9,0.3,300),(100,30,0.3,300),(100,13,0.3,600),(400,30,0.3,1200)

Γ2 (10,13,0.3,150),(50,4,0.3,300),(60,18,0.3,600),(125,9,0.3,1200)

Γ3 (200,4,0.3,450),(300,4,0.3,600),(400,4,0.3,900),(1000,4,0.3,1800)

Γ4 (2,18,0.3,250),(4,30,0.3,250),(10,47,0.3,500),(20,47,0.3,500),
(10,89,0.3,750),(30,30,0.3,1500)

APPENDIX

Theorem 1: If all tasks in Γ have at most one critical section
executed on the accelerator, then the request-driven analysis
always dominates the job-driven analysis.

Proof: Consider the case where all tasks in Γ have at
most one critical section executed on the accelerator. Both the
request-driven and job-driven analyses determine schedulabil-
ity using response-time calculations, and hence, use Equation
1. The only difference lies in the calculation of high-priority
blocking faced by each task τi. In the request-driven analysis,
the number of instances of each high-priority task τh, which
contribute to blocking τi, is given by the term βi,h, which
upper bounds the number of accelerator requests made by
a higher-priority task τh, while τi is being blocked. Thus,
βi,h = ⌈

Bi+Wh−Eh

Th
⌉, where Bi upper bounds the time for

which τi is blocked [2][17]. In contrast, for the job-driven
analysis, the number of instances of each high-priority task
τh, which contribute to blocking τi, is given by the term αi,h,
which upper bounds the number of accelerator requests made
by a higher-priority task τh, during τi’s response time. Thus,
αi,h = ⌈

Wi+Wh−Eh

Th
⌉, where Wi upper bounds τi’s worst-case

response time [2]. From Equation 1, for every task τi, we
can conclude that Bi <Wi. Therefore, for every feasible pair
of τi and τh, βi,h ≤ αi,h. This implies that, for the given
context, the request-driven analysis always computes a tighter
blocking estimate, as compared to the job-driven analysis.
Thus, from Equation 1, we can also conclude that the request-
driven analysis always computes a tighter worst-case response-
time estimate, as compared to the job-driven analysis. ∎

Theorem 5: Consider a feasible CPU frequency fcpu ∈

[fsolocpu , fmax), and its corresponding minimum feasible accel-
erator frequency facc. If we increase the CPU frequency by
δ, then the energy consumption decreases if and only if, the
gradient of the accelerator frequency w.r.t the CPU frequency,

∣∇fcpu,facc ∣ = ∣
∂facc
∂fcpu

∣ >
Kcpu ∗Ucpu ∗ f

α−1
cpu

Kacc ∗Uacc ∗ fα−1
acc

(6)



Algorithm 5 Minimizing Accelerator Frequency
1: procedure CYCLESOLO-ACCEL(Γ, εconv)
2: flow = fhigh = Uacc ▷ initial bounds
3: for τi ∈ Γ do ▷ from high to low priority
4: flow, fhigh = EstimateFreqRange(τi,Γ, fhigh, flow)
5: end for
6: fmin = BinarySearch(Γ, εconv, fhigh, flow)
7: return fmin
8: end procedure
9: procedure ESTIMATEFREQRANGE(τi,Γ, fhigh, flow)

10: /*S = slack, ω = resp time, β = accelerator workload*/
11: fh = fhigh, S = β = ∆ = 0, fest = 1, BusyFlag=TRUE
12: W = Calculate-HP-ResponseTime(fh)
13: Bi = CalculateBlocking(τi,Γ, fh,W )
14: ωg = Gi −Gcpu ▷ Accelerator execution time
15: ω = Ci +Gi +Bi, ω′ = 0, Ji = ω
16: while ω <Di do
17: if BusyFlag == TRUE then
18: ∆ =Di − ω
19: while ω <Di AND ∆ > 0 do
20: ω′ = ∑i−1

h=0Eh ∗ [⌊
ω+Wh−(Eh)

Th
⌋ + 1]

21: ω′ = ω′ + Ji + S, ∆ = ω′ − ω,ω = ω′

22: end while
23: BusyFlag = FALSE
24: else ▷ Start of an idle period
25: t=Find-EarliestSchedulingPoint(τi,Γ, ω)
26: S = S + (t − ω), ω = t, t′ = ωg + S,β = ωg
27: if β/t′ < fest then
28: fest = β/t

′

29: end if
30: BusyFlag = TRUE
31: end if
32: end while
33: flow, fhigh = RatchetSearch-Step(fhigh, flow, fest)
34: return flow, fhigh
35: end procedure
36: procedure CALCULATEBLOCKING(τi,Γ, fh,W )
37: Gl,max = maxτl∈lp(τi)(Gl), B = Gl,max/fh, B′ = 0
38: while B != B′ do
39: B′ = B, B = Gl,max

fh
+∑τh∈hp(τi)⌈

B′+Wh−Eh

Th
⌉∗

Gh

fh
40: end while
41: return B
42: end procedure

Proof: Given the power model from Section III-B, the
gradients of the energy at any frequency pair (fcpu, facc), are:
∂Etotal/∂fcpu = α ∗Kcpu ∗Ucpu ∗ f

α−1
cpu and ∂Etotal/∂facc =

α ∗ Kacc ∗ Uacc ∗ f
α−1
acc . Now, for each frequency pair, as-

sume that an increase in one frequency say fcpu, causes a
corresponding increase in energy (∂Etotal), which can be
compensated (−∂Etotal) by a decrease in the other frequency
facc. In this case, we can divide one of the above gradients
by the other, we get the ratio of the frequency changes which
yields the same energy, i.e.,

∣∇0∣ =
∂Etotal/∂fcpu

∂Etotal/∂facc
=
∂facc
∂fcpu

=
Kcpu ∗Ucpu ∗ f

α−1
cpu

Kacc ∗Uacc ∗ fα−1
acc

Algorithm 6 Minimizing the Common Frequency
1: procedure CYCLESOLO-ID(Γ, εconv)
2: flow = fhigh = Ucpu ▷ initial bounds
3: for τi ∈ Γ do ▷ from high to low priority
4: flow, fhigh = EstimateFreqRange(τi,Γ, fhigh, flow)
5: end for
6: fmin = BinarySearch(Γ, εconv, fhigh, flow)
7: return fmin
8: end procedure
9: procedure ESTIMATEFREQRANGE(τi,Γ, fhigh, flow)

10: /*S = slack, ω = resp time, β = total workload*/
11: fh = fhigh, S = β = ∆ = 0, fest = 1, BusyFlag=TRUE
12: W = Calculate-HP-ResponseTime(fh)
13: Bi = CalculateBlocking(τi,Γ, fh,W )
14: ω = Ci +Gi +Bi, ω′ = 0, Ji = ω
15: while ω <Di do
16: if BusyFlag == TRUE then
17: ∆ =Di − ω
18: while ω <Di AND ∆ > 0 do
19: ω′ = ∑i−1

h=0Eh ∗ [⌊
ω+Wh−(Eh/fh)

Th
⌋ + 1]

20: ω′ = ω′ + Ji + S, ∆ = ω′ − ω,ω = ω′

21: end while
22: BusyFlag = FALSE
23: else ▷ Start of an idle period
24: t=Find-EarliestSchedulingPoint(τi,Γ, ω)
25: S = S+(t−ω), ω = t, t′ = ω−Bi, β = ω−Bi−S
26: if β/t′ < fest then
27: fest = β/t

′

28: end if
29: BusyFlag = TRUE
30: end if
31: end while
32: flow, fhigh = RatchetSearch-Step(fhigh, flow, fest)
33: return flow, fhigh
34: end procedure
35: procedure CALCULATEBLOCKING(τi,Γ, fh,W )
36: Gl,max = maxτl∈lp(τi)(Gl), B = Gl,max/fh, B′ = 0
37: while B != B′ do
38: B′ = B, B = Gl,max

fh
+∑τh∈hp(τi)⌈

B′+Wh−Eh
fh

Th
⌉∗

Gh

fh
39: end while
40: return B
41: end procedure

Now, for a feasible frequency pair (fcpu, facc), if the absolute
value of the gradient of the see-saw relationship at frequency
fcpu, ∣∇fcpu,facc ∣ > ∣∇0∣, then the decrease in the accelerator
frequency facc can more than compensate for the increase
in energy caused by increasing the CPU frequency fcpu,
causing the overall energy to decrease. Conversely, if the
energy decreases on increasing the CPU frequency fcpu by a
small value ∆, then the corresponding decrease in accelerator
frequency facc by a small value ∆′, is more than that required
to compensate for the increase in energy caused by increasing
fcpu, leading to ∣∇fcpu,facc ∣ > ∣∇0∣. ∎

The source code for our algorithms can be found at
https://bitbucket.org/sandeepdsouza93/cycletandem
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