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Abstract—Cyber-physical systems (CPS) are increasingly inter-
connected and require real-time coordination among distributed
entities. Real-time coordination of traffic lights at city scale to
improve traffic flow and reduce trip times is one such geo-
distributed application where coordination can yield significant
economic and environmental benefits. While low latency is key
for real-time coordination, a shared sense of time with the added
notion of Quality of Time (QoT) is useful for fault detection,
and enables fault-tolerant coordinated action in distributed CPS
[1][2][3]. To enable such coordinated geo-distributed applica-
tions, we introduce Quartz, which exposes ‘“Time-as-a-Service”.
Quartz features a distributed architecture, implemented using
containerized micro-services, and allows applications to specify
their timing requirements. Quartz orchestrates the underlying
system to meet these requirements, and feeds back the delivered
Quality of Time back to the application. In this work, we
demonstrate the capabilities of Quartz and the utility of the
notion of Quality of Time, using simulation of a distributed city-
scale traffic-management system.

I. INTRODUCTION

Time plays a key role in enabling coordination among dis-
tributed entities [4]. A non-exhaustive list of such coordinated
systems includes swarm robotics [5], distributed databases [6],
and city-scale traffic management. In such systems, a shared
notion of time, by means of synchronized clocks, enables: (i)
events to be ordered at distributed scale, and (ii) coordinated
actuation to be scheduled at/by specific time instants.

Clock synchronization is a mature field and technologies
such as GPS, Network Time Protocol (NTP) [7], and Precision
Time Protocol (PTP) [8] have made it possible to provide
distributed systems with a reliable and accurate shared notion
of time. However, most of these technologies are best-effort
and agnostic to application requirements. Additionally, clock
synchronization is not perfect, and there is always some
uncertainty in a node’s estimate of the share notion of time. If
this timing uncertainty exceeds an application’s specifications,
it can affect the quality and reliability of coordination [2].

To mitigate these issues, time needs to be exposed as a first
class entity to applications. This can be done by: (i) allowing
applications to specify their timing requirements (accuracy
and resolution), and (ii) feeding back the delivered timing
uncertainty back to the application, which enables applications
to adapt in the face of timing uncertainty exceeding specified
limits. Thus, fault-tolerant time-based coordination can be
enabled by using the notion of Quality of Time (QoT) [1],
which represents the uncertainty bounds corresponding to
a timestamp, with respect to a clock reference. From an

application perspective, if these uncertainty bounds exceed
an acceptable limit, the application can enter a graceful-
degradation mode, and thus be fault-tolerant in the face of
clock-synchronization failure. Based on this notion of Quality
of Time, [1] also introduced a reference QoT Architecture
along with its corresponding implementation for Linux, called
the QoT Stack for Linux.

Modern distributed cyber-physical applications are inher-
ently complex, and consist of multiple interacting components.
Thus, deploying these components and managing their life-
cycle is a complex endeavor. Additionally, many of these com-
ponents will be deployed in the cloud or edge devices in con-
junction with other applications. In such scenarios, the use of
technologies like containerization [9] simplify the deployment
and life-cycle management of complex applications. Thus, we
present Quartz which builds on the QoT Stack for Linux [1]
to provide “Time-as-a-Service” to containerized applications.
Quartz features a distributed architecture, implemented using
containerized micro-services, making it easy to deploy and use
across a range of platforms.

In this work, we demonstrate the capabilities of Quartz and
the utility of the notion of Quality of Time, by means of a
distributed city-scale traffic-management system deployed in
simulation using the SUMO traffic simulator [10].

II. QUARTZ

Quartz is a user-space implementation of the QoT Stack for
Linux, and has been built from the ground up for containerized
applications. It features a rich application programming inter-
face (API) that is centered around the notion of a timeline
— a virtual sense of time to which applications bind with
their desired accuracy interval and minimum resolution timing
requirements [1]. A timeline can span multiple nodes, and
provides a shared notion of time, with the desired QoT, to all
distributed application components bound to it. This enables
developers to easily write choreographed applications which
can specify and observe timing uncertainty.

Quartz features a distributed implementation, composed of
containerized services. It works by constructing a timing sub-
system in Linux that runs parallel to timekeeping and POSIX
timers. In this stack, quality metrics are passed alongside time
calls. Quartz is still under development, and currently provides
API bindings for C++ and Python applications. The following
services make up the key components of Quartz:
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Fig. 1. The Quartz Micro-Service Architecture

1) Timeline Service is the interface through which applica-
tions interact with Quartz, i.e., most API requests are handled
by the timeline service. It is also tasked with performing the
bookkeeping of the timelines that exist on a physical node, the
applications bound to each timeline, and the Quality of Time
requirements of each application and timeline.

2) QoT Clock-Synchronization Service synchronizes the
per-timeline clock and computes the QoT estimates.

3) Coordination Service is the distributed component of the
stack, responsible for discovering other nodes on a timeline,
and conveying QoT requirements across nodes. This informa-
tion is used by the timeline service to orchestrate the clock-
synchronization service based on QoT requirements.

Figure 1 provides an overview of the different Quartz
services and their interactions.

III. DEMONSTRATION OVERVIEW

In this demo, we simulate a city-scale traffic scenario with
multiple intersections, using the open-source SUMO traffic
simulator [10]. We use TraCIl [10] to interface with the
simulation, and ensure that each time-step in the simulation
mirrors the flow of time in the real world. Using TraCl,
we expose each intersection as MQTT endpoints which (i)
periodically publish intersection state — the number of vehicles
queued per-incoming lane in the last period, and (ii) listen
for commands — the next phase of the traffic lights at the
intersection. Note that using MQTT endpoints at the simulator
interface decouples the simulation logic from the controllers.

Each intersection is controlled by an edge controller, respon-
sible for controlling the timing and phase of the traffic lights
at the intersection. Note that the controller is containerized
and can be deployed on any platform. But we envision it to be
placed on an edge device with a low-latency connection to the
intersection. The containerized controller gets the intersection
state by subscribing to the MQTT endpoints corresponding to
the intersection. The controller is based on deep reinforcement-
learning, which uses the current intersection state to dy-
namically decide the next phase of the traffic lights at the
intersection. The chosen phase is published to the intersection
MQTT endpoint listening for commands. Each intersection
controller can also periodically receive timestamped state from

Traffic Traffic Light
State Phase

Traffic Scenario
Simulation
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adjacent intersections, which it uses to improve traffic flow in
coordination with other intersections.

In the above described scenario, a shared notion of time
is key to ensure that (i) state from adjacent intersections has
accurate timestamps, and (ii) the phase of the traffic lights at
an intersection can be switched at an accurate time instant to
ensure efficient traffic flow. Thus, each intersection controller
uses Quartz to bind to the traffic-management timeline, while
Quartz ensures that all controllers bound to the timeline share
the same notion of time with the desired QoT specification.
Quartz also ensures every timestamp is appended with accurate
QoT estimates, enabling controllers to decide “data validity”
based on the QoT bounds, i.e., data with QoT bounds beyond
tolerable limits can be discarded or used with caution.

The containerized intersection controllers and the Quartz
micro-services are deployed using the Nutanix Sherlock IoT
platform [11]. Sherlock makes it easy to seamlessly develop,
deploy, monitor and manage distributed IoT applications
across multiple edge devices. Application components can be
deployed as containers or event-triggered functions. Sherlock
also provides the capabilities required to manage the life-cycle
of applications and operationalize such systems at scale.

Figure 2 provides an overview of the architecture of the
demo city-scale traffic-management application.
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